官术网_书友最值得收藏!

Profiling your code

We saw in the previous example that we can individually time different functions and components with the standard time function in Python. While this approach works fine for our small example program, this won't always be feasible for larger programs that call on many different functions, some of which may or may not be worth our effort to parallelize, or even optimize on the CPU. Our goal here is to find the bottlenecks and hotspots of a programeven if we were feeling energetic and used time around every function call we make, we might miss something, or there might be some system or library calls that we don't even consider that happen to be slowing things down. We should find candidate portions of the code to offload onto the GPU before we even think about rewriting the code to run on the GPU; we must always follow the wise words of the famous American computer scientist Donald Knuth: Premature optimization is the root of all evil.

We use what is known as a profiler to find these hot spots and bottlenecks in our code. A profiler will conveniently allow us to see where our program is taking the most time, and allow us to optimize accordingly.

主站蜘蛛池模板: 寿光市| 海口市| 长子县| 建平县| 新邵县| 郁南县| 邵阳县| 阳原县| 高台县| 东至县| 宕昌县| 织金县| 福鼎市| 兰州市| 丽江市| 盐边县| 通州区| 宜都市| 东阳市| 成安县| 和顺县| 肇庆市| 共和县| 宜章县| 高要市| 马龙县| 莫力| 宜都市| 垦利县| 武鸣县| 华容县| 股票| 彭泽县| 前郭尔| 永德县| 吉木乃县| 扎赉特旗| 眉山市| 岳池县| 石柱| 洛南县|