官术网_书友最值得收藏!

ELKI

ELKI creates an environment for developing KDD applications supported by index structures, with an emphasis on unsupervised learning. It provides various implementations for cluster analysis and outlier detection. It provides index structures such as R*-tree for performance boosting and scalability. It is widely used in research areas by students and faculties up until now and has been gaining attention from other parties recently.

ELKI uses the AGPLv3 license, and can be found at https://elki-project.github.io/. It is comprised of the following packages:

  • de.lmu.ifi.dbs.elki.algorithm: Contains various algorithms such as clustering, classification, itemset mining, and so on
  • de.lmu.ifi.dbs.elki.outlier: Defines an outlier-based algorithm
  • de.lmu.ifi.dbs.elki.statistics: Defines a statistical analysis algorithm
  • de.lmu.ifi.dbs.elki.database: This is the ELKI database layer
  • de.lmu.ifi.dbs.elki.index: This is for index structure implementation
  • de.lmu.ifi.dbs.elki.data: Defines various data types and database object types
主站蜘蛛池模板: 桃园县| 临沂市| 安化县| 镇安县| 菏泽市| 滨州市| 枝江市| 宁武县| 博湖县| 乐陵市| 罗城| 德兴市| 阿勒泰市| 海淀区| 奎屯市| 郴州市| 津南区| 安平县| 镇雄县| 蒙城县| 旬阳县| 赤壁市| 旬阳县| 方正县| 临汾市| 霍城县| 洪湖市| 滕州市| 南宫市| 吉首市| 牙克石市| 建平县| 十堰市| 维西| 庆云县| 屏山县| 四子王旗| 贵定县| 花莲县| 汤原县| 井冈山市|