官术网_书友最值得收藏!

ELKI

ELKI creates an environment for developing KDD applications supported by index structures, with an emphasis on unsupervised learning. It provides various implementations for cluster analysis and outlier detection. It provides index structures such as R*-tree for performance boosting and scalability. It is widely used in research areas by students and faculties up until now and has been gaining attention from other parties recently.

ELKI uses the AGPLv3 license, and can be found at https://elki-project.github.io/. It is comprised of the following packages:

  • de.lmu.ifi.dbs.elki.algorithm: Contains various algorithms such as clustering, classification, itemset mining, and so on
  • de.lmu.ifi.dbs.elki.outlier: Defines an outlier-based algorithm
  • de.lmu.ifi.dbs.elki.statistics: Defines a statistical analysis algorithm
  • de.lmu.ifi.dbs.elki.database: This is the ELKI database layer
  • de.lmu.ifi.dbs.elki.index: This is for index structure implementation
  • de.lmu.ifi.dbs.elki.data: Defines various data types and database object types
主站蜘蛛池模板: 峨山| 大足县| 铜川市| 剑河县| 延吉市| 白山市| 武清区| 茶陵县| 姜堰市| 永福县| 昌宁县| 迁安市| 修水县| 赫章县| 鹿泉市| 安丘市| 奉节县| 从江县| 武强县| 武义县| 兴业县| 英超| 枣强县| 淅川县| 罗定市| 尼木县| 尼勒克县| 锡林郭勒盟| 象州县| 道真| 禹城市| 砀山县| 遵化市| 内乡县| 张家港市| 华坪县| 上杭县| 黔东| 丰镇市| 会宁县| 自贡市|