- Machine Learning in Java
- AshishSingh Bhatia Bostjan Kaluza
- 130字
- 2021-06-10 19:30:08
ELKI
ELKI creates an environment for developing KDD applications supported by index structures, with an emphasis on unsupervised learning. It provides various implementations for cluster analysis and outlier detection. It provides index structures such as R*-tree for performance boosting and scalability. It is widely used in research areas by students and faculties up until now and has been gaining attention from other parties recently.
ELKI uses the AGPLv3 license, and can be found at https://elki-project.github.io/. It is comprised of the following packages:
- de.lmu.ifi.dbs.elki.algorithm: Contains various algorithms such as clustering, classification, itemset mining, and so on
- de.lmu.ifi.dbs.elki.outlier: Defines an outlier-based algorithm
- de.lmu.ifi.dbs.elki.statistics: Defines a statistical analysis algorithm
- de.lmu.ifi.dbs.elki.database: This is the ELKI database layer
- de.lmu.ifi.dbs.elki.index: This is for index structure implementation
- de.lmu.ifi.dbs.elki.data: Defines various data types and database object types
推薦閱讀
- 集成架構中型系統
- AutoCAD繪圖實用速查通典
- Ansible Quick Start Guide
- Dreamweaver 8中文版商業案例精粹
- Windows XP中文版應用基礎
- 統計學習理論與方法:R語言版
- 傳感器與物聯網技術
- 完全掌握AutoCAD 2008中文版:機械篇
- 具比例時滯遞歸神經網絡的穩定性及其仿真與應用
- Ruby on Rails敏捷開發最佳實踐
- SAP Business Intelligence Quick Start Guide
- Excel 2007終極技巧金典
- Hands-On Dashboard Development with QlikView
- HBase Essentials
- 計算機應用基礎實訓·職業模塊