- Machine Learning in Java
- AshishSingh Bhatia Bostjan Kaluza
- 121字
- 2021-06-10 19:30:01
Roc curves
Most classification algorithms return a classification confidence denoted as f(X), which is, in turn, used to calculate the prediction. Following the credit card abuse example, a rule might look similar to the following:
The threshold determines the error rate and the true positive rate. The outcomes of all the possible threshold values can be plotted as receiver operating characteristics (ROC) as shown in the following diagram:
A random predictor is plotted with a red dashed line and a perfect predictor is plotted with a green dashed line. To compare whether the A classifier is better than C, we compare the area under the curve.
Most of the toolboxes provide all of the previous measures out of the box.
推薦閱讀
- ABB工業(yè)機(jī)器人編程全集
- 人工智能超越人類
- Go Machine Learning Projects
- 計(jì)算機(jī)圖形學(xué)
- 并行數(shù)據(jù)挖掘及性能優(yōu)化:關(guān)聯(lián)規(guī)則與數(shù)據(jù)相關(guān)性分析
- Dreamweaver 8中文版商業(yè)案例精粹
- WOW!Illustrator CS6完全自學(xué)寶典
- 程序設(shè)計(jì)缺陷分析與實(shí)踐
- 離散事件系統(tǒng)建模與仿真
- Photoshop CS3圖像處理融會(huì)貫通
- 電腦故障排除與維護(hù)終極技巧金典
- 網(wǎng)頁(yè)設(shè)計(jì)與制作
- 天才與算法:人腦與AI的數(shù)學(xué)思維
- ARM嵌入式系統(tǒng)開發(fā)完全入門與主流實(shí)踐
- 中小型網(wǎng)站建設(shè)與管理