- TensorFlow Machine Learning Projects
- Ankit Jain Armando Fandango Amita Kapoor
- 783字
- 2021-06-10 19:15:34
Detecting exoplanets in outer space
For the project explained in this chapter, we use the Kepler labeled time series data from Kaggle: https://www.kaggle.com/keplersmachines/kepler-labelled-time-series-data/home. This dataset is derived mainly from the Campaign 3 observations of the mission by NASA's Kepler space telescope.
In the dataset, column 1 values are the labels and columns 2 to 3198 values are the flux values over time. The training set has 5087 data points, 37 confirmed exoplanets, and 5050 non-exoplanet stars. The test set has 570 data points, 5 confirmed exoplanets, and 565 non-exoplanet stars.
We will carry out the following steps to download, and then preprocess our data to create the train and test datasets:
- Download the dataset using the Kaggle API. The following code will be used for the same:
armando@librenix:~/datasets/kaggle-kepler$ kaggle datasets download -d keplersmachines/kepler-labelled-time-series-data
Downloading kepler-labelled-time-series-data.zip to /mnt/disk1tb/datasets/kaggle-kepler
100%|██████████████████████████████████████| 57.4M/57.4M [00:03<00:00, 18.3MB/s]
The folder contains the following two files:
exoTest.csv exoTrain.csv
- Link the folder datasets to our home folder so we can access it from the ~/datasets/kaggle-kepler path and then we define the folder path and list the contents of the folder through the Notebook to confirm if we have access to the data files through the Notebook:
dsroot = os.path.join(os.path.expanduser('~'),'datasets','kaggle-kepler')
os.listdir(dsroot)
We get the following output:
['exoTest.csv', 'kepler-labelled-time-series-data.zip', 'exoTrain.csv']
- We will then read the two .csv data files in the pandas DataFrames named train and test respectively:
import pandas as pd
train = pd.read_csv(os.path.join(dsroot,'exoTrain.csv'))
test = pd.read_csv(os.path.join(dsroot,'exoTest.csv'))
print('Training data\n',train.head())
print('Test data\n',test.head())
The first five lines of the training and test data look similar to the following:
Training data
LABEL FLUX.1 FLUX.2 FLUX.3 \ 0 2 93.85 83.81 20.10 1 2 -38.88 -33.83 -58.54 2 2 532.64 535.92 513.73 3 2 326.52 347.39 302.35 4 2 -1107.21 -1112.59 -1118.95
FLUX.4 FLUX.5 FLUX.6 FLUX.7 \ 0 -26.98 -39.56 -124.71 -135.18 1 -40.09 -79.31 -72.81 -86.55 2 496.92 456.45 466.00 464.50 3 298.13 317.74 312.70 322.33 4 -1095.10 -1057.55 -1034.48 -998.34
FLUX.8 FLUX.9 ... FLUX.3188 \ 0 -96.27 -79.89 ... -78.07 1 -85.33 -83.97 ... -3.28 2 486.39 436.56 ... -71.69 3 311.31 312.42 ... 5.71 4 -1022.71 -989.57 ... -594.37
FLUX.3189 FLUX.3190 FLUX.3191 \ 0 -102.15 -102.15 25.13 1 -32.21 -32.21 -24.89 2 13.31 13.31 -29.89 3 -3.73 -3.73 30.05 4 -401.66 -401.66 -357.24
FLUX.3192 FLUX.3193 FLUX.3194 0 48.57 92.54 39.32 1 -4.86 0.76 -11.70 2 -20.88 5.06 -11.80 3 20.03 -12.67 -8.77 4 -443.76 -438.54 -399.71 FLUX.3195 FLUX.3196 FLUX.3197 0 61.42 5.08 -39.54 1 6.46 16.00 19.93 2 -28.91 -70.02 -96.67 3 -17.31 -17.35 13.98 4 -384.65 -411.79 -510.54 [5 rows x 3198 columns]
Test data
LABEL FLUX.1 FLUX.2 FLUX.3 \ 0 2 119.88 100.21 86.46 1 2 5736.59 5699.98 5717.16 2 2 844.48 817.49 770.07 3 2 -826.00 -827.31 -846.12 4 2 -39.57 -15.88 -9.16
FLUX.4 FLUX.5 FLUX.6 FLUX.7 \ 0 48.68 46.12 39.39 18.57 1 5692.73 5663.83 5631.16 5626.39 2 675.01 605.52 499.45 440.77 3 -836.03 -745.50 -784.69 -791.22 4 -6.37 -16.13 -24.05 -0.90 FLUX.8 FLUX.9 ... FLUX.3188 \ 0 6.98 6.63 ... 14.52 1 5569.47 5550.44 ... -581.91 2 362.95 207.27 ... 17.82 3 -746.50 -709.53 ... 122.34 4 -45.20 -5.04 ... -37.87
FLUX.3189 FLUX.3190 FLUX.3191 \ 0 19.29 14.44 -1.62 1 -984.09 -1230.89 -1600.45 2 -51.66 -48.29 -59.99 3 93.03 93.03 68.81 4 -61.85 -27.15 -21.18 FLUX.3192 FLUX.3193 FLUX.3194 \ 0 13.33 45.50 31.93 1 -1824.53 -2061.17 -2265.98 2 -82.10 -174.54 -95.23 3 9.81 20.75 20.25 4 -33.76 -85.34 -81.46
FLUX.3195 FLUX.3196 FLUX.3197 0 35.78 269.43 57.72 1 -2366.19 -2294.86 -2034.72 2 -162.68 -36.79 30.63 3 -120.81 -257.56 -215.41 4 -61.98 -69.34 -17.84
[5 rows x 3198 columns]
The training and test datasets have labels in the first column and 3197 features in the next columns. Now let us split the training and test data into labels and features with the following code:
x_train = train.drop('LABEL', axis=1)
y_train = train.LABEL-1 #subtract one because of TGBT
x_test = test.drop('LABEL', axis=1)
y_test = test.LABEL-1
In the preceding code, we subtract 1 from the labels, since the TFBT estimator assumes labels starting with numerical zero while the features in the datasets are numbers 1 and 2.
Now that we have the label and feature vectors for training and test data, let us build the boosted tree models.
- 樂高機器人EV3設計指南:創造者的搭建邏輯
- Visual FoxPro 6.0數據庫與程序設計
- Mastering Salesforce CRM Administration
- 物聯網與云計算
- INSTANT Heat Maps in R:How-to
- Salesforce Advanced Administrator Certification Guide
- 經典Java EE企業應用實戰
- 基于RPA技術財務機器人的應用與研究
- 三菱FX/Q系列PLC工程實例詳解
- 手把手教你學Flash CS3
- 精通ROS機器人編程(原書第2版)
- 人工智能:重塑個人、商業與社會
- 巧學活用AutoCAD
- NetSuite ERP for Administrators
- 數據結構與算法(C++語言版)