- Hands-On Big Data Modeling
- James Lee Tao Wei Suresh Kumar Mukhiya
- 127字
- 2021-06-10 18:58:49
Data quality
It is important that the stored data is useful, error-free, and meant for its intended purpose. High-quality data gives actionable insights, whereas poor-quality data leads to poor analysis, and hence, to poor decisions. Errors in the data in these industries can break regulations, leading to legal complications. The following factors can help to evaluate data quality:
- Completeness: Are there values missing in the data set?
- Validity: The data matches the rule set.
- Uniqueness: The data has minimal redundancies.
- Consistency: The data is consistent across various data stores.
- Timeliness: The data represents reality from a required point in time.
- Accuracy: The degree to which the result of a particular measurement, calculation, or specification conforms to the correct value.
推薦閱讀
- 繪制進(jìn)程圖:可視化D++語(yǔ)言(第1冊(cè))
- AutoCAD繪圖實(shí)用速查通典
- Getting Started with MariaDB
- 機(jī)器人智能運(yùn)動(dòng)規(guī)劃技術(shù)
- 最后一個(gè)人類
- 西門子S7-200 SMART PLC實(shí)例指導(dǎo)學(xué)與用
- 工業(yè)機(jī)器人操作與編程
- Salesforce for Beginners
- Building a BeagleBone Black Super Cluster
- Visual FoxPro程序設(shè)計(jì)
- 啊哈C!思考快你一步
- 機(jī)器學(xué)習(xí)案例分析(基于Python語(yǔ)言)
- Windows 7來(lái)了
- 計(jì)算機(jī)辦公應(yīng)用培訓(xùn)教程
- PyTorch深度學(xué)習(xí)