官术网_书友最值得收藏!

Data quality

It is important that the stored data is useful, error-free, and meant for its intended purpose. High-quality data gives actionable insights, whereas poor-quality data leads to poor analysis, and hence, to poor decisions. Errors in the data in these industries can break regulations, leading to legal complications. The following factors can help to evaluate data quality:

  • Completeness: Are there values missing in the data set?
  • Validity: The data matches the rule set
  • Uniqueness: The data has minimal redundancies. 
  • Consistency: The data is consistent across various data stores. 
  • Timeliness: The data represents reality from a required point in time. 
  • Accuracy: The degree to which the result of a particular measurement, calculation, or specification conforms to the correct value.
主站蜘蛛池模板: 中牟县| 江城| 井研县| 大理市| 遂川县| 若羌县| 平邑县| 云安县| 共和县| 磐石市| 济南市| 普兰县| 枣阳市| 犍为县| 平安县| 孟连| 同德县| 尉犁县| 齐齐哈尔市| 贵州省| 吉隆县| 玉溪市| 格尔木市| 怀安县| 苏州市| 苏州市| 射洪县| 罗定市| 诏安县| 儋州市| 平武县| 安阳市| 荣成市| 苏尼特左旗| 游戏| 梁河县| 营口市| 略阳县| 常德市| 中阳县| 镇雄县|