官术网_书友最值得收藏!

Data quality

It is important that the stored data is useful, error-free, and meant for its intended purpose. High-quality data gives actionable insights, whereas poor-quality data leads to poor analysis, and hence, to poor decisions. Errors in the data in these industries can break regulations, leading to legal complications. The following factors can help to evaluate data quality:

  • Completeness: Are there values missing in the data set?
  • Validity: The data matches the rule set
  • Uniqueness: The data has minimal redundancies. 
  • Consistency: The data is consistent across various data stores. 
  • Timeliness: The data represents reality from a required point in time. 
  • Accuracy: The degree to which the result of a particular measurement, calculation, or specification conforms to the correct value.
主站蜘蛛池模板: 沂水县| 湖州市| 谷城县| 新巴尔虎右旗| 墨玉县| 五家渠市| 天柱县| 武宁县| 咸阳市| 利川市| 佛学| 阳春市| 阿拉善盟| 新和县| 九台市| 大竹县| 青浦区| 永善县| 潜山县| 南江县| 吉木萨尔县| 金山区| 建始县| 施秉县| 石泉县| 景泰县| 和田市| 花莲县| 布尔津县| 上犹县| 集贤县| 响水县| 甘肃省| 长葛市| 沾化县| 象山县| 汝南县| 淮安市| 合阳县| 灌阳县| 隆回县|