官术网_书友最值得收藏!

Learning the initializations

In this method, we try to learn optimal initial parameter values. What do we mean by that? Let's say we are a building a neural network to classify images. First, we initialize random weights, calculate loss, and minimize the loss through a gradient descent. So, we will find the optimal weights through gradient descent and minimize the loss. Instead of initializing the weights randomly, if can we initialize the weights with optimal values or close to optimal values, then we can attain the convergence faster and we can learn very quickly. We will see how exactly we can find these optimal initial weights with algorithms such as MAML, Reptile, and Meta-SGD in the upcoming chapters.

主站蜘蛛池模板: 宜章县| 乾安县| 金寨县| 科尔| 横峰县| 萍乡市| 永川市| 体育| 称多县| 阳东县| 富民县| 盐城市| 巴林右旗| 罗山县| 兴和县| 富蕴县| 应城市| 肥城市| 平原县| 大庆市| 巴楚县| 当雄县| 宜黄县| 赞皇县| 大姚县| 淳化县| 博客| 来安县| 偏关县| 南漳县| 绥滨县| 萨迦县| 台南县| 宝应县| 普陀区| 新化县| 奎屯市| 昔阳县| 古丈县| 孝感市| 商丘市|