官术网_书友最值得收藏!

Learning the initializations

In this method, we try to learn optimal initial parameter values. What do we mean by that? Let's say we are a building a neural network to classify images. First, we initialize random weights, calculate loss, and minimize the loss through a gradient descent. So, we will find the optimal weights through gradient descent and minimize the loss. Instead of initializing the weights randomly, if can we initialize the weights with optimal values or close to optimal values, then we can attain the convergence faster and we can learn very quickly. We will see how exactly we can find these optimal initial weights with algorithms such as MAML, Reptile, and Meta-SGD in the upcoming chapters.

主站蜘蛛池模板: 靖远县| 东莞市| 永丰县| 承德市| 青阳县| 城市| 金乡县| 宝兴县| 皮山县| 无为县| 庆元县| 榆树市| 图片| 景东| 蒲江县| 安阳县| 汪清县| 文安县| 荆州市| 天祝| 曲松县| 恩施市| 太保市| 遂溪县| 盐边县| 惠东县| 上犹县| 临颍县| 石嘴山市| 兰州市| 洪泽县| 鲁山县| 岱山县| 陈巴尔虎旗| 黔西县| 湖北省| 漳浦县| 鸡泽县| 突泉县| 宜昌市| 山阴县|