官术网_书友最值得收藏!

The ResNet50 transfer learning network

The ResNet50 model for transfer learning can be defined similarly to the VGG16 and InceptionV3 networks, as follows:

def resnet_pseudo(dim=224,freeze_layers=10,full_freeze='N'):
# model_save_dest = {}
model = ResNet50(weights='imagenet',include_top=False)
x = model.output
x = GlobalAveragePooling2D()(x)
x = Dense(512, activation='relu')(x)
x = Dropout(0.5)(x)
x = Dense(512, activation='relu')(x)
x = Dropout(0.5)(x)
out = Dense(5,activation='softmax')(x)
model_final = Model(input = model.input,outputs=out)
if full_freeze != 'N':
for layer in model.layers[0:freeze_layers]:
layer.trainable = False
return model_final


主站蜘蛛池模板: 临桂县| 渭南市| 玉环县| 太白县| 响水县| 会昌县| 昌吉市| 大姚县| 铜川市| 凌云县| 三台县| 中西区| 石首市| 错那县| 襄城县| 沙田区| 昌图县| 扶绥县| 金华市| 鄂温| 正定县| 诸暨市| 龙游县| 夹江县| 牟定县| 聂拉木县| 大荔县| 紫云| 晴隆县| 海晏县| 宜川县| 津南区| 思茅市| 柳州市| 营口市| 水城县| 定南县| 榆树市| 岳池县| 柳林县| 云安县|