- Machine Learning Quick Reference
- Rahul Kumar
- 88字
- 2021-08-20 10:05:06
Least absolute shrinkage and selection operator
The least absolute shrinkage and selection operator (LASSO) is also called L1. In this case, the preceding penalty parameter is replaced by |βj|:

By minimizing the preceding function, the coefficients are found and adjusted. In this scenario, as lambda becomes larger, λ → ∞, the penalty component rises, and so estimates start shrinking and become 0 (it doesn't happen in the case of ridge regression; rather, it would just be close to 0).
推薦閱讀
- 工業機器人虛擬仿真實例教程:KUKA.Sim Pro(全彩版)
- 大數據項目管理:從規劃到實現
- Mastering Matplotlib 2.x
- 樂高機器人EV3設計指南:創造者的搭建邏輯
- Hands-On Data Science with SQL Server 2017
- Cloud Analytics with Microsoft Azure
- STM32嵌入式微控制器快速上手
- 大數據時代
- 新編計算機組裝與維修
- 計算機組網技術
- FPGA/CPLD應用技術(Verilog語言版)
- Mastering GitLab 12
- Linux系統下C程序開發詳解
- 基于人工免疫原理的檢測系統模型及其應用
- Visual Basic項目開發案例精粹