官术网_书友最值得收藏!

JSON files with the pandas module

JSON strings or files can be read with the pandas.read_json() function, which returns a DataFrame or series object. For example, the following code reads the zips.json file:

df = pd.read_json(os.path.join(data_folder,data_file), lines=True)
print(df)

We set lines=True because each line contains a separate object in JSON format. Without this argument being set to True, pandas will raise ValueError. The DataFrame is printed as follows:

         _id             city                               loc    pop state
0       1001           AGAWAM           [-72.622739, 42.070206]  15338    MA
1       1002          CUSHMAN            [-72.51565, 42.377017]  36963    MA
...      ...              ...                               ...    ...   ...
29351  99929         WRANGELL          [-132.352918, 56.433524]   2573    AK
29352  99950        KETCHIKAN           [-133.18479, 55.942471]    422    AK

[29353 rows x 5 columns]

To save the pandas DataFrame or series object to a JSON file or string, use the Dataframe.to_json() function.

While CSV and JSON remain the most popular data formats for IoT data, due to its large size, it is often necessary to distribute data. There are two popular distributed mechanisms for data storage and access: HDF5 and HDFS. Let's first learn about the HDF5 format.

主站蜘蛛池模板: 叙永县| 万安县| 山东省| 临朐县| 荃湾区| 海安县| 怀化市| 清远市| 禄劝| 家居| 沈阳市| 宕昌县| 青神县| 云龙县| 昂仁县| 临夏县| 五家渠市| 庆安县| 华安县| 无为县| 庆安县| 宁夏| 峡江县| 富宁县| 玉溪市| 横峰县| 酉阳| 武强县| 庄浪县| 冷水江市| 磐石市| 岳池县| 临江市| 兴业县| 探索| 张家界市| 临西县| 弥勒县| 乌拉特前旗| 金秀| 襄樊市|