官术网_书友最值得收藏!

JSON files with the pandas module

JSON strings or files can be read with the pandas.read_json() function, which returns a DataFrame or series object. For example, the following code reads the zips.json file:

df = pd.read_json(os.path.join(data_folder,data_file), lines=True)
print(df)

We set lines=True because each line contains a separate object in JSON format. Without this argument being set to True, pandas will raise ValueError. The DataFrame is printed as follows:

         _id             city                               loc    pop state
0       1001           AGAWAM           [-72.622739, 42.070206]  15338    MA
1       1002          CUSHMAN            [-72.51565, 42.377017]  36963    MA
...      ...              ...                               ...    ...   ...
29351  99929         WRANGELL          [-132.352918, 56.433524]   2573    AK
29352  99950        KETCHIKAN           [-133.18479, 55.942471]    422    AK

[29353 rows x 5 columns]

To save the pandas DataFrame or series object to a JSON file or string, use the Dataframe.to_json() function.

While CSV and JSON remain the most popular data formats for IoT data, due to its large size, it is often necessary to distribute data. There are two popular distributed mechanisms for data storage and access: HDF5 and HDFS. Let's first learn about the HDF5 format.

主站蜘蛛池模板: 固镇县| 什邡市| 蒲江县| 双辽市| 和顺县| 大同县| 永修县| 容城县| 砚山县| 化州市| 合肥市| 呼伦贝尔市| 丰镇市| 岑巩县| 南陵县| 澄江县| 平遥县| 福建省| 宾川县| 汾西县| 新郑市| 沁水县| 克山县| 云安县| 卢龙县| 铜山县| 洪雅县| 镇雄县| 临沧市| 个旧市| 广元市| 灵川县| 洛宁县| 旌德县| 汾西县| 泽库县| 宾川县| 开江县| 治县。| 繁昌县| 中宁县|