- Generative Adversarial Networks Projects
- Kailash Ahirwar
- 92字
- 2021-07-02 13:38:53
Testing the models
To test the networks, create the generator and the discriminator networks. Then, load the learned weights. Finally, use the predict() method to generate predictions:
# Create models
generator = build_generator()
discriminator = build_discriminator()
# Load model weights
generator.load_weights(os.path.join(generated_volumes_dir, "generator_weights.h5"), True)
discriminator.load_weights(os.path.join(generated_volumes_dir, "discriminator_weights.h5"), True)
# Generate 3D images
z_sample = np.random.normal(0, 0.33, size=[batch_size, 1, 1, 1, z_size]).astype(np.float32)
generated_volumes = generator.predict(z_sample, verbose=3)
In this section, we have successfully trained the generator and the discriminator of the 3D-GAN. In the next section, we will explore hyperparameter tuning and various hyperparameter optimization options.
推薦閱讀
- Oracle SOA Governance 11g Implementation
- Natural Language Processing Fundamentals
- 計算機應用復習與練習
- 機器學習與大數據技術
- Photoshop CS3圖像處理融會貫通
- 傳感器與物聯網技術
- Learning C for Arduino
- 悟透AutoCAD 2009案例自學手冊
- 手把手教你學Photoshop CS3
- SQL Server 2019 Administrator's Guide
- BeagleBone Home Automation
- Hands-On Edge Analytics with Azure IoT
- IBM Watson Projects
- 人工智能時代移動學習服務
- 圖解變頻器維修