官术网_书友最值得收藏!

One-sided label smoothing

Earlier, label/target values for a classifier were 0 or 1; 0 for fake images and 1 for real images. Because of this, GANs were prone to adversarial examples, which are inputs to a neural network that result in an incorrect output from the network. Label smoothing is an approach to provide smoothed labels to the discriminator network. This means we can have decimal values such as 0.9 (true), 0.8 (true), 0.1 (fake), or 0.2 (fake), instead of labeling every example as either 1 (true) or 0 (fake). We smooth the target values (label values) of the real images as well as of the fake images. Label smoothing can reduce the risk of adversarial examples in GANs. To apply label smoothing, assign the labels 0.9, 0.8, and 0.7, and 0.1, 0.2, and 0.3, to the images. To find out more about label smoothing, refer to the following paper: https://arxiv.org/pdf/1606.03498.pdf.

主站蜘蛛池模板: 余姚市| 桐乡市| 邯郸县| 聂荣县| 泽库县| 新河县| 沙雅县| 宜君县| 东莞市| 吉首市| 土默特左旗| 和平区| 彭阳县| 迭部县| 新野县| 房山区| 龙海市| 尚义县| 淄博市| 太康县| 大理市| 江城| 浮梁县| 德格县| 屏东市| 延寿县| 海宁市| 介休市| 靖远县| 永嘉县| 太仆寺旗| 吉林省| 益阳市| 清远市| 莱芜市| 福建省| 宜昌市| 漳州市| 博湖县| 赫章县| 崇义县|