- Generative Adversarial Networks Projects
- Kailash Ahirwar
- 101字
- 2021-07-02 13:38:47
Internal covariate shift
An internal covariate shift occurs when there is a change in the input distribution to our network. When the input distribution changes, hidden layers try to learn to adapt to the new distribution. This slows down the training process. If a process slows down, it takes a long time to converge to a global minimum. This problem occurs when the statistical distribution of the input to the networks is drastically different from the input that it has seen before. Batch normalization and other normalization techniques can solve this problem. We will explore these in the following sections.
推薦閱讀
- Instant Raspberry Pi Gaming
- Natural Language Processing Fundamentals
- 21天學(xué)通Java Web開發(fā)
- 運(yùn)動控制器與交流伺服系統(tǒng)的調(diào)試和應(yīng)用
- Java Web整合開發(fā)全程指南
- Prometheus監(jiān)控實(shí)戰(zhàn)
- Lightning Fast Animation in Element 3D
- Python:Data Analytics and Visualization
- 從零開始學(xué)SQL Server
- 云計(jì)算和大數(shù)據(jù)的應(yīng)用
- Working with Linux:Quick Hacks for the Command Line
- 青少年VEX IQ機(jī)器人實(shí)訓(xùn)課程(初級)
- 自適應(yīng)學(xué)習(xí):人工智能時代的教育革命
- 機(jī)器人剛?cè)狁詈蟿恿W(xué)
- Microsoft System Center Data Protection Manager Cookbook