官术网_书友最值得收藏!

How to do it...

We have a dataset that is based on the properties of wines. Using this dataset, we'll build multiple regression models with the quality as our response variable. With multiple learners, we extract multiple predictions. The averaging technique would take the average of all of the predicted values for each training sample:

  1. Import the required libraries:
# Import required libraries
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.svm import SVR

  1. Create the response and feature sets:
# Create feature and response variable set
from sklearn.cross_validation import train_test_split

# create feature & response variables
feature_columns = ['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar','chlorides', 'free sulfur dioxide', 'total sulfur dioxide','density', 'pH', 'sulphates', 'alcohol']
X = df_winedata[feature_columns]
Y = df_winedata['quality']
  1. Split the data into training and testing sets:
# Create train & test sets
X_train, X_test, Y_train, Y_test = \
train_test_split(X, Y, test_size=0.20, random_state=1)
  1. Build the base regression learners using linear regression, SVR, and a decision tree:
# Build base learners
linreg_model = LinearRegression()
svr_model = SVR()
regressiontree_model = DecisionTreeRegressor()

# Fitting the model
linreg_model.fit(X_train, Y_train)
svr_model.fit(X_train, Y_train)
regressiontree_model.fit(X_train, Y_train)
  1. Use the base learners to make a prediction based on the test data:
linreg_predictions = linreg_model.predict(X_test)
svr_predictions = svr_model.predict(X_test)
regtree_predictions = regressiontree_model.predict(X_test)
  1. Add the predictions and divide by the number of base learners:
# We divide the summation of the predictions by 3 i.e. number of base learners 
average_predictions=(linreg_predictions + svr_predictions + regtree_predictions)/3
主站蜘蛛池模板: 勐海县| 枣庄市| 穆棱市| 常德市| 龙南县| 昌宁县| 鱼台县| 巴林左旗| 海晏县| 潮安县| 虹口区| 柳州市| 余江县| 察雅县| 兰溪市| 榆林市| 扎赉特旗| 荔波县| 汕头市| 民和| 淮北市| 阳新县| 武隆县| 台北市| 洮南市| 襄城县| 增城市| 普宁市| 茂名市| 进贤县| 额尔古纳市| 余江县| 松阳县| 清河县| 包头市| 阿巴嘎旗| 苏尼特左旗| 恭城| 梨树县| 灵武市| 布尔津县|