官术网_书友最值得收藏!

How to do it...

  1. Import the relevant dataset (Please refer to the Predicting house price.ipynb file in GitHub while implementing the code and for the recommended dataset):
from keras.datasets import boston_housing
(train_data, train_targets), (test_data, test_targets) = boston_housing.load_data()
  1. Normalize the input and output dataset so that all variables have a range from zero to one:
import numpy as np
train_data2 = train_data/np.max(train_data,axis=0)
test_data2 = test_data/np.max(train_data,axis=0)
train_targets = train_targets/np.max(train_targets)
test_targets = test_targets/np.max(train_targets)

Note that we have normalized the test dataset with the maximum value in the train dataset itself, as we should not be using any of the values from the test dataset in the model-building process. Additionally, note that we have normalized both the input and the output values.

  1. Now that the input and output datasets are prepared, let's proceed and define the model:
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.utils import np_utils
from keras.regularizers import l1
model = Sequential()
model.add(Dense(64, input_dim=13, activation='relu', kernel_regularizer = l1(0.1)))
model.add(Dense(1, activation='relu', kernel_regularizer = l1(0.1)))
model.summary()

A summary of the model is as follows:

Note that we performed  L1  regularization in the model-building process so that the model does not overfit on the training data (as the number of data points in the training data is small).

  1. Compile the model to minimize the mean absolute error value:
model.compile(loss='mean_absolute_error', optimizer='adam')
  1. Fit the model:
history = model.fit(train_data2, train_targets, validation_data=(test_data2, test_targets), epochs=100, batch_size=32, verbose=1)
  1. Calculate the mean absolute error on the test dataset:
np.mean(np.abs(model.predict(test_data2) - test_targets))*50

We should note that the mean absolute error is ~6.7 units.

In the next section, we will vary the loss function and add custom weights to see whether we can improve upon the mean absolute error values.

主站蜘蛛池模板: 乌拉特中旗| 平远县| 中卫市| 当雄县| 华坪县| 海林市| 潼关县| 泰宁县| 天柱县| 鲁山县| 邵东县| 南开区| 双桥区| 曲阳县| 休宁县| 和林格尔县| 大竹县| 行唐县| 洛浦县| 麻阳| 色达县| 太康县| 仁布县| 永州市| 安吉县| 棋牌| 静宁县| 青神县| 广州市| 深圳市| 怀柔区| 南木林县| 阿瓦提县| 沈丘县| 武隆县| 皮山县| 靖西县| 冀州市| 桦南县| 调兵山市| 徐闻县|