官术网_书友最值得收藏!

Training a neural network

Training a neural network basically means calibrating all of the weights in a neural network by repeating two key steps: forward-propagation and back-propagation.

In forward-propagation, we apply a set of weights to the input data, pass it through the hidden layer, perform the nonlinear activation on the hidden layer output, and then connect the hidden layer to the output layer by multiplying the hidden layer node values with another set of weights. For the first forward-propagation, the values of the weights are initialized randomly.

In back-propagation, we try to decrease the error by measuring the margin of error of output and then adjust weight accordingly. Neural networks repeat both forward- and back-propagation to predict an output until the weights are calibrated.

主站蜘蛛池模板: 霍邱县| 徐水县| 长垣县| 宁武县| 汶上县| 工布江达县| 扬中市| 榕江县| 武邑县| 三门县| 夏津县| 常德市| 精河县| 行唐县| 夹江县| 蒙自县| 左贡县| 昌吉市| 台中市| 城市| 乌拉特后旗| 绥中县| 辽阳市| 长葛市| 南陵县| 涿州市| 吐鲁番市| 商洛市| 枞阳县| 丰顺县| 阳谷县| 新晃| 津南区| 彰化县| 淳化县| 大洼县| 石河子市| 通山县| 西城区| 义乌市| 都匀市|