- Neural Networks with Keras Cookbook
- V Kishore Ayyadevara
- 115字
- 2021-07-02 12:46:21
Introduction
A neural network is a supervised learning algorithm that is loosely inspired by the way the brain functions. Similar to the way neurons are connected to each other in the brain, a neural network takes input, passes it through a function, certain subsequent neurons get excited, and consequently the output is produced.
In this chapter, you will learn the following:
- Architecture of a neural network
- Applications of a neural network
- Setting up a feedforward neural network
- How forward-propagation works
- Calculating loss values
- How gradient descent works in back-propagation
- The concepts of epochs and batch size
- Various loss functions
- Various activation functions
- Building a neural network from scratch
- Building a neural network in Keras
推薦閱讀
- 國際大學生程序設計競賽中山大學內部選拔真題解(二)
- Docker進階與實戰
- Learning ArcGIS Pro 2
- 算法精粹:經典計算機科學問題的Java實現
- C#程序設計教程
- Scratch 3游戲與人工智能編程完全自學教程
- Elastic Stack應用寶典
- Full-Stack React Projects
- 名師講壇:Java微服務架構實戰(SpringBoot+SpringCloud+Docker+RabbitMQ)
- Active Directory with PowerShell
- Visual C#.NET Web應用程序設計
- 零基礎學Kotlin之Android項目開發實戰
- Android移動開發案例教程:基于Android Studio開發環境
- 編寫高質量代碼:改善Objective-C程序的61個建議
- 嵌入式Linux C語言程序設計基礎教程