- Machine Learning with R Quick Start Guide
- Iván Pastor Sanz
- 174字
- 2021-06-24 16:01:31
Matrix functions
Furthermore, there are specific functions for matrices:
- The following function extracts the diagonal as a vector:
m<-matrix(c(1,2,3,4,5,6,7,8,9), nrow=3, ncol=3)
m
## [,1] [,2] [,3]
## [1,] 1 4 7
## [2,] 2 5 8
## [3,] 3 6 9
diag(m)
## [1] 1 5 9
- Returns the dimensions of a matrix:
dim(m)
## [1] 3 3
- Returns the sum of columns of a matrix:
colSums(m)
## [1] 6 15 24
- Returns the sum of rows of a matrix:
rowSums(m)
## [1] 12 15 18
- The transpose of a matrix can be obtained using the following code:
t(m)
## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 4 5 6
## [3,] 7 8 9
- Returns the determinant of a matrix:
det(m)
## [1] 0
- The auto-values and auto-vectors of a matrix are obtained using the following code:
eigen(m)
## eigen() decomposition
## $values
## [1] 1.611684e+01 -1.116844e+00 -5.700691e-16
##
## $vectors
## [,1] [,2] [,3]
## [1,] -0.4645473 -0.8829060 0.4082483
## [2,] -0.5707955 -0.2395204 -0.8164966
## [3,] -0.6770438 0.4038651 0.4082483
推薦閱讀
- 機器學習實戰:基于Sophon平臺的機器學習理論與實踐
- Div+CSS 3.0網頁布局案例精粹
- 傳感器技術實驗教程
- Cloud Analytics with Microsoft Azure
- 現代機械運動控制技術
- Moodle Course Design Best Practices
- ESP8266 Home Automation Projects
- 大學C/C++語言程序設計基礎
- 精通數據科學算法
- Windows Server 2008 R2活動目錄內幕
- 經典Java EE企業應用實戰
- 筆記本電腦電路分析與故障診斷
- Effective Business Intelligence with QuickSight
- Practical AWS Networking
- 機器人剛柔耦合動力學