官术网_书友最值得收藏!

Declaring ragged tensors

A ragged tensor is a tensor with one or more ragged dimensions. Ragged dimensions are dimensions that have slices that may have different lengths.

There are a variety of methods for declaring ragged arrays, the simplest being a constant ragged array.

The following example shows how to declare a constant ragged array and the lengths of the individual slices:

ragged =tf.ragged.constant([[5, 2, 6, 1], [], [4, 10, 7], [8], [6,7]])

print(ragged)
print(ragged[0,:])
print(ragged[1,:])
print(ragged[2,:])
print(ragged[3,:])
print(ragged[4,:])

The output is as follows:

<tf.RaggedTensor [[5, 2, 6, 1], [], [4, 10, 7], [8], [6, 7]]>
tf.Tensor([5 2 6 1], shape=(4,), dtype=int32)
tf.Tensor([], shape=(0,), dtype=int32)
tf.Tensor([ 4 10  7], shape=(3,), dtype=int32)
tf.Tensor([8], shape=(1,), dtype=int32)
tf.Tensor([6 7], shape=(2,), dtype=int32)

Note the shape of the individual slices.

A common way of creating a ragged array is by using the tf.RaggedTensor.from_row_splits() method, which has the following signature:

@classmethod
from_row_splits
(
cls
,
values
,
row_splits
,
name
=None
)

Here, values is a list of the values to be turned into the ragged array, and row_splits is a list of the positions where the value list is to be split, so that the values for row ragged[i] are stored in ragged.values[ragged.row_splits[i]:ragged.row_splits[i+1]]:

print(tf.RaggedTensor.from_row_splits(values=[5, 2, 6, 1, 4, 10, 7, 8, 6, 7],
row_splits=[0, 4, 4, 7, 8, 10]))

RaggedTensor is as follows:

<tf.RaggedTensor [[5, 2, 6, 1], [], [4, 10, 7], [8], [6, 7]]>
主站蜘蛛池模板: 常德市| 广德县| 渭源县| 大竹县| 东辽县| 长阳| 临泽县| 自贡市| 宣汉县| 贵阳市| 克山县| 渭南市| 鹿泉市| 宁乡县| 巴南区| 吴堡县| 建水县| 诏安县| 新沂市| 多伦县| 南开区| 定边县| 临澧县| 望都县| 武宣县| 阳新县| 秦皇岛市| 嘉荫县| 延长县| 漳平市| 云林县| 梁河县| 台前县| 英吉沙县| 桃园县| 安溪县| 哈巴河县| 嘉祥县| 浮山县| 聂荣县| 台湾省|