官术网_书友最值得收藏!

Declaring ragged tensors

A ragged tensor is a tensor with one or more ragged dimensions. Ragged dimensions are dimensions that have slices that may have different lengths.

There are a variety of methods for declaring ragged arrays, the simplest being a constant ragged array.

The following example shows how to declare a constant ragged array and the lengths of the individual slices:

ragged =tf.ragged.constant([[5, 2, 6, 1], [], [4, 10, 7], [8], [6,7]])

print(ragged)
print(ragged[0,:])
print(ragged[1,:])
print(ragged[2,:])
print(ragged[3,:])
print(ragged[4,:])

The output is as follows:

<tf.RaggedTensor [[5, 2, 6, 1], [], [4, 10, 7], [8], [6, 7]]>
tf.Tensor([5 2 6 1], shape=(4,), dtype=int32)
tf.Tensor([], shape=(0,), dtype=int32)
tf.Tensor([ 4 10  7], shape=(3,), dtype=int32)
tf.Tensor([8], shape=(1,), dtype=int32)
tf.Tensor([6 7], shape=(2,), dtype=int32)

Note the shape of the individual slices.

A common way of creating a ragged array is by using the tf.RaggedTensor.from_row_splits() method, which has the following signature:

@classmethod
from_row_splits
(
cls
,
values
,
row_splits
,
name
=None
)

Here, values is a list of the values to be turned into the ragged array, and row_splits is a list of the positions where the value list is to be split, so that the values for row ragged[i] are stored in ragged.values[ragged.row_splits[i]:ragged.row_splits[i+1]]:

print(tf.RaggedTensor.from_row_splits(values=[5, 2, 6, 1, 4, 10, 7, 8, 6, 7],
row_splits=[0, 4, 4, 7, 8, 10]))

RaggedTensor is as follows:

<tf.RaggedTensor [[5, 2, 6, 1], [], [4, 10, 7], [8], [6, 7]]>
主站蜘蛛池模板: 广灵县| 嵊州市| 河南省| 织金县| 且末县| 张家川| 千阳县| 饶河县| 静海县| 九龙城区| 巧家县| 平江县| 永兴县| 马鞍山市| 杭锦后旗| 晴隆县| 呼玛县| 元阳县| 泰和县| 博野县| 防城港市| 肃宁县| 丰原市| 东兴市| 铁岭市| 横山县| 孙吴县| 四会市| 彰化市| 稷山县| 定结县| 航空| 沭阳县| 潜江市| 盐亭县| 泾川县| 浦北县| 高平市| 疏勒县| 阿坝| 德惠市|