- TensorFlow 2.0 Quick Start Guide
- Tony Holdroyd
- 203字
- 2021-06-24 16:02:04
Declaring ragged tensors
A ragged tensor is a tensor with one or more ragged dimensions. Ragged dimensions are dimensions that have slices that may have different lengths.
There are a variety of methods for declaring ragged arrays, the simplest being a constant ragged array.
The following example shows how to declare a constant ragged array and the lengths of the individual slices:
ragged =tf.ragged.constant([[5, 2, 6, 1], [], [4, 10, 7], [8], [6,7]])
print(ragged)
print(ragged[0,:])
print(ragged[1,:])
print(ragged[2,:])
print(ragged[3,:])
print(ragged[4,:])
The output is as follows:
<tf.RaggedTensor [[5, 2, 6, 1], [], [4, 10, 7], [8], [6, 7]]> tf.Tensor([5 2 6 1], shape=(4,), dtype=int32) tf.Tensor([], shape=(0,), dtype=int32) tf.Tensor([ 4 10 7], shape=(3,), dtype=int32) tf.Tensor([8], shape=(1,), dtype=int32) tf.Tensor([6 7], shape=(2,), dtype=int32)
Note the shape of the individual slices.
A common way of creating a ragged array is by using the tf.RaggedTensor.from_row_splits() method, which has the following signature:
@classmethod
from_row_splits(
cls,
values,
row_splits,
name=None
)
Here, values is a list of the values to be turned into the ragged array, and row_splits is a list of the positions where the value list is to be split, so that the values for row ragged[i] are stored in ragged.values[ragged.row_splits[i]:ragged.row_splits[i+1]]:
print(tf.RaggedTensor.from_row_splits(values=[5, 2, 6, 1, 4, 10, 7, 8, 6, 7],
row_splits=[0, 4, 4, 7, 8, 10]))
RaggedTensor is as follows:
<tf.RaggedTensor [[5, 2, 6, 1], [], [4, 10, 7], [8], [6, 7]]>
- 繪制進程圖:可視化D++語言(第1冊)
- 控制與決策系統仿真
- Mobile DevOps
- JMAG電機電磁仿真分析與實例解析
- 大數據挑戰與NoSQL數據庫技術
- JBoss ESB Beginner’s Guide
- Embedded Programming with Modern C++ Cookbook
- 21天學通C語言
- Enterprise PowerShell Scripting Bootcamp
- Blender 3D Printing by Example
- Hands-On Reactive Programming with Reactor
- Spatial Analytics with ArcGIS
- 工業自動化技術實訓指導
- 從零開始學Java Web開發
- IBM? SmartCloud? Essentials