官术网_书友最值得收藏!

Ranking (dimensions) of a tensor

The rank of a tensor is the number of dimensions it has, that is, the number of indices that are required to specify any particular element of that tensor.

The rank of a tensor can be ascertained with this, for example:

tf.rank(t2)

The output will be as follows:

<tf.Tensor: id=53, shape=(), dtype=int32, numpy=3>
(the shape is () because the output here is a scalar value)
主站蜘蛛池模板: 沙河市| 五大连池市| 安塞县| 榆林市| 饶阳县| 衡东县| 旅游| 宝清县| 嘉禾县| 民丰县| 彩票| 马边| 本溪| 轮台县| 河曲县| 北辰区| 河曲县| 观塘区| 宜兰市| 桃江县| 双城市| 阿鲁科尔沁旗| 宜黄县| 柘荣县| 吉林省| 津南区| 仁化县| 汨罗市| 邳州市| 满洲里市| 朝阳区| 天气| 定安县| 新野县| 盘锦市| 东至县| 任丘市| 乳源| 万源市| 甘肃省| 棋牌|