官术网_书友最值得收藏!

Declaring eager variables

The way to declare a TensorFlow eager variable is as follows:

t0 = 24 # python variable
t1 = tf.Variable(42) # rank 0 tensor
t2 = tf.Variable([ [ [0., 1., 2.], [3., 4., 5.] ], [ [6., 7., 8.], [9., 10., 11.] ] ]) #rank 3 tensor
t0, t1, t2

The output will be as follows:

(24,
 <tf.Variable 'Variable:0' shape=() dtype=int32, numpy=42>,
 <tf.Variable 'Variable:0' shape=(2, 2, 3) dtype=float32, numpy=
 array([[[ 0.,  1.,  2.],
         [ 3.,  4.,  5.]],
         [[ 6.,  7.,  8.],
         [ 9., 10., 11.]]], dtype=float32)>)

TensorFlow will infer the datatype, defaulting to tf.float32 for floats and tf.int32 for integers (see the preceding examples).

Alternatively, the datatype can be explicitly specified, as here:

f64 = tf.Variable(89, dtype = tf.float64)
f64.dtype

TensorFlow has a large number of built-in datatypes.

Examples include those seen previously, tf.int16, tf.complex64, and tf.string. See https://www.tensorflow.org/api_docs/python/tf/dtypes/DType. To reassign a variable, use var.assign(), as here:

f1 = tf.Variable(89.)
f1

# <tf.Variable 'Variable:0' shape=() dtype=float32, numpy=89.0>

f1.assign(98.)
f1

# <tf.Variable 'Variable:0' shape=() dtype=float32, numpy=98.0>
主站蜘蛛池模板: 唐海县| 衡阳市| 错那县| 嘉鱼县| 隆尧县| 旺苍县| 贺兰县| 龙井市| 丰都县| 广平县| 长春市| 乐陵市| 都江堰市| 宣武区| 柘荣县| 高安市| 潢川县| 资阳市| 荃湾区| 富源县| 望都县| 江孜县| 栾川县| 万年县| 泗洪县| 延津县| 邯郸市| 平果县| 邵阳县| 浦江县| 延庆县| 菏泽市| 凤翔县| 邓州市| 佛教| 延安市| 宁远县| 台北市| 邳州市| 华蓥市| 沛县|