- TensorFlow 2.0 Quick Start Guide
- Tony Holdroyd
- 131字
- 2021-06-24 16:02:03
Declaring eager variables
The way to declare a TensorFlow eager variable is as follows:
t0 = 24 # python variable
t1 = tf.Variable(42) # rank 0 tensor
t2 = tf.Variable([ [ [0., 1., 2.], [3., 4., 5.] ], [ [6., 7., 8.], [9., 10., 11.] ] ]) #rank 3 tensor
t0, t1, t2
The output will be as follows:
(24, <tf.Variable 'Variable:0' shape=() dtype=int32, numpy=42>, <tf.Variable 'Variable:0' shape=(2, 2, 3) dtype=float32, numpy= array([[[ 0., 1., 2.], [ 3., 4., 5.]], [[ 6., 7., 8.], [ 9., 10., 11.]]], dtype=float32)>)
TensorFlow will infer the datatype, defaulting to tf.float32 for floats and tf.int32 for integers (see the preceding examples).
Alternatively, the datatype can be explicitly specified, as here:
f64 = tf.Variable(89, dtype = tf.float64)
f64.dtype
TensorFlow has a large number of built-in datatypes.
Examples include those seen previously, tf.int16, tf.complex64, and tf.string. See https://www.tensorflow.org/api_docs/python/tf/dtypes/DType. To reassign a variable, use var.assign(), as here:
f1 = tf.Variable(89.)
f1
# <tf.Variable 'Variable:0' shape=() dtype=float32, numpy=89.0>
f1.assign(98.)
f1
# <tf.Variable 'Variable:0' shape=() dtype=float32, numpy=98.0>
推薦閱讀
- ArchiCAD 19:The Definitive Guide
- 輕輕松松自動化測試
- Dreamweaver CS3網頁制作融會貫通
- Effective DevOps with AWS
- 快學Flash動畫百例
- 空間傳感器網絡復雜區域智能監測技術
- 模型制作
- CorelDRAW X4中文版平面設計50例
- STM32嵌入式微控制器快速上手
- OpenStack Cloud Computing Cookbook(Second Edition)
- 中國戰略性新興產業研究與發展·智能制造
- Ruby on Rails敏捷開發最佳實踐
- R Machine Learning Projects
- 從零開始學SQL Server
- Photoshop CS5圖像處理入門、進階與提高