- TensorFlow 2.0 Quick Start Guide
- Tony Holdroyd
- 131字
- 2021-06-24 16:02:03
Declaring eager variables
The way to declare a TensorFlow eager variable is as follows:
t0 = 24 # python variable
t1 = tf.Variable(42) # rank 0 tensor
t2 = tf.Variable([ [ [0., 1., 2.], [3., 4., 5.] ], [ [6., 7., 8.], [9., 10., 11.] ] ]) #rank 3 tensor
t0, t1, t2
The output will be as follows:
(24, <tf.Variable 'Variable:0' shape=() dtype=int32, numpy=42>, <tf.Variable 'Variable:0' shape=(2, 2, 3) dtype=float32, numpy= array([[[ 0., 1., 2.], [ 3., 4., 5.]], [[ 6., 7., 8.], [ 9., 10., 11.]]], dtype=float32)>)
TensorFlow will infer the datatype, defaulting to tf.float32 for floats and tf.int32 for integers (see the preceding examples).
Alternatively, the datatype can be explicitly specified, as here:
f64 = tf.Variable(89, dtype = tf.float64)
f64.dtype
TensorFlow has a large number of built-in datatypes.
Examples include those seen previously, tf.int16, tf.complex64, and tf.string. See https://www.tensorflow.org/api_docs/python/tf/dtypes/DType. To reassign a variable, use var.assign(), as here:
f1 = tf.Variable(89.)
f1
# <tf.Variable 'Variable:0' shape=() dtype=float32, numpy=89.0>
f1.assign(98.)
f1
# <tf.Variable 'Variable:0' shape=() dtype=float32, numpy=98.0>
推薦閱讀
- Hands-On Intelligent Agents with OpenAI Gym
- 電氣自動化專業英語(第3版)
- Mastering Mesos
- Hands-On Machine Learning on Google Cloud Platform
- 數據挖掘方法及天體光譜挖掘技術
- 網絡安全與防護
- Ruby on Rails敏捷開發最佳實踐
- Linux服務與安全管理
- Docker on Amazon Web Services
- 突破,Objective-C開發速學手冊
- INSTANT Heat Maps in R:How-to
- 網絡服務搭建、配置與管理大全(Linux版)
- Visual Studio 2010 (C#) Windows數據庫項目開發
- 傳感器與自動檢測
- 計算機硬件技術基礎(第2版)