Summary
In this chapter, we learned how to set up our machine by installing Anaconda, Docker, OpenAI Gym, Universe, and TensorFlow. We also learned how to create simulations using OpenAI and how to train agents to learn in an OpenAI environment. Then we came across the fundamentals of TensorFlow followed by visualizing graphs in TensorBoard.
In the Chapter 3, The Markov Decision Process and Dynamic Programming we will learn about Markov Decision Process and dynamic programming and how to solve frozen lake problem using value and policy iteration.
推薦閱讀
- MySQL高可用解決方案:從主從復制到InnoDB Cluster架構
- 大規模數據分析和建模:基于Spark與R
- Python絕技:運用Python成為頂級數據工程師
- 輕松學大數據挖掘:算法、場景與數據產品
- Mastering Ninject for Dependency Injection
- 數據之巔:數據的本質與未來
- Python數據分析入門:從數據獲取到可視化
- Java Data Science Cookbook
- Spark大數據分析實戰
- Python金融數據分析(原書第2版)
- 深入淺出 Hyperscan:高性能正則表達式算法原理與設計
- 改變未來的九大算法
- 大數據與機器學習:實踐方法與行業案例
- 代碼的未來
- 算力芯片:高性能CPU/GPU/NPU微架構分析