Summary
In this chapter, we learned how to set up our machine by installing Anaconda, Docker, OpenAI Gym, Universe, and TensorFlow. We also learned how to create simulations using OpenAI and how to train agents to learn in an OpenAI environment. Then we came across the fundamentals of TensorFlow followed by visualizing graphs in TensorBoard.
In the Chapter 3, The Markov Decision Process and Dynamic Programming we will learn about Markov Decision Process and dynamic programming and how to solve frozen lake problem using value and policy iteration.
推薦閱讀
- Word 2010中文版完全自學(xué)手冊(cè)
- Spark快速大數(shù)據(jù)分析(第2版)
- DB29forLinux,UNIX,Windows數(shù)據(jù)庫(kù)管理認(rèn)證指南
- Learning Spring Boot
- 數(shù)據(jù)驅(qū)動(dòng):從方法到實(shí)踐
- 智能數(shù)據(jù)分析:入門、實(shí)戰(zhàn)與平臺(tái)構(gòu)建
- 數(shù)據(jù)挖掘原理與SPSS Clementine應(yīng)用寶典
- Power BI商業(yè)數(shù)據(jù)分析完全自學(xué)教程
- Construct 2 Game Development by Example
- 淘寶、天貓電商數(shù)據(jù)分析與挖掘?qū)崙?zhàn)(第2版)
- 二進(jìn)制分析實(shí)戰(zhàn)
- 從實(shí)踐中學(xué)習(xí)sqlmap數(shù)據(jù)庫(kù)注入測(cè)試
- Python數(shù)據(jù)分析從小白到專家
- 成功之路:ORACLE 11g學(xué)習(xí)筆記
- 數(shù)據(jù)可視化五部曲