- Applied Deep Learning with Keras
- Ritesh Bhagwat Mahla Abdolahnejad Matthew Moocarme
- 94字
- 2021-06-11 13:41:24
Chapter 1
Introduction to Machine Learning with Keras
Learning Objectives
By the end of this chapter, you will be able to:
- Present data for use in machine learning models
- Explain how to preprocess data for a machine learning model
- Build a logistic regression model with scikit-learn
- Use regularization in machine learning models
- Evaluate model performance with model evaluation metrics
In this chapter, we will learn how to preprocess data for machine learning models. We will learn how to develop logistic regression models with scikit-learn. Lastly, we will evaluate model performance with model evaluation metrics.
推薦閱讀
- 龍芯應(yīng)用開(kāi)發(fā)標(biāo)準(zhǔn)教程
- micro:bit魔法修煉之Mpython初體驗(yàn)
- OpenGL Game Development By Example
- 基于Proteus仿真的51單片機(jī)應(yīng)用
- 基于網(wǎng)絡(luò)化教學(xué)的項(xiàng)目化單片機(jī)應(yīng)用技術(shù)
- Intel FPGA權(quán)威設(shè)計(jì)指南:基于Quartus Prime Pro 19集成開(kāi)發(fā)環(huán)境
- Blender 3D By Example
- Building Machine Learning Systems with Python
- 單片機(jī)原理及應(yīng)用
- FPGA實(shí)戰(zhàn)訓(xùn)練精粹
- Raspberry Pi Home Automation with Arduino
- 創(chuàng)客電子:Arduino和Raspberry Pi智能制作項(xiàng)目精選
- FPGA進(jìn)階開(kāi)發(fā)與實(shí)踐
- Unreal Development Kit Game Programming with UnrealScript:Beginner's Guide
- Spring Cloud微服務(wù)架構(gòu)開(kāi)發(fā)