官术网_书友最值得收藏!

Quantifying separations – k-means clustering and the silhouette score

The most difficult class separation in this dataset is versicolor and virginica. The violins for each of these classes tell us that the two techniques actually produce different results. Using the setosa distribution as a reference in both plots, the LDA versicolor distribution is tighter (that is, wider and shorter) than the PCA one, causing its interquartile range to be further separated from the interquartile range of the virginica distribution. If this analysis is not rigorous enough for you, we can easily quantify this difference by using a clustering algorithm on the data. Let's use the k-means clustering algorithm to mathematically group the data together, and then use the quantitative metric called silhouette coefficient to score the tightness of the resulting clusters – a higher score means tighter clusters. Since the k-means algorithm is very straightforward and the quality of the grouping is directly related to the quality of the input data, tighter clusters will prove that the input features separate the classes better:

# cluster With k-means and check silhouette score
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score

# initialize k-means algo object
kmns = KMeans(n_clusters=3, random_state=42)

# fit algo to pca and find silhouette score
out_kms_pca = kmns.fit_predict(out_pca)
silhouette = silhouette_score(out_pca, out_kms_pca)
print("PCA silhouette score = " + str(silhouette))

# fit algo to lda and find silhouette score
out_kms_lda = kmns.fit_predict(out_lda)
silhouette = silhouette_score(out_lda, out_kms_lda)
print("LDA silhouette score = %2f " % silhouette)

The following output shows that the LDA classes are better separated: 

PCA silhouette score = 0.598
LDA silhouette score = 0.656

This makes sense because the LDA function had more information, namely, the classes to be separated. 

主站蜘蛛池模板: 额敏县| 高雄市| 广南县| 荥阳市| 河南省| 独山县| 文水县| 灯塔市| 晋城| 普陀区| 武汉市| 东方市| 龙门县| 蓝山县| 陆川县| 康马县| 罗城| 涞水县| 叶城县| 出国| 长武县| 大足县| 海阳市| 侯马市| 靖边县| 玉树县| 南充市| 大庆市| 阿图什市| 札达县| 兖州市| 司法| 舒城县| 桑日县| 云阳县| 额尔古纳市| 拉孜县| 华安县| 云浮市| 武威市| 和硕县|