官术网_书友最值得收藏!

Quantifying separations – k-means clustering and the silhouette score

The most difficult class separation in this dataset is versicolor and virginica. The violins for each of these classes tell us that the two techniques actually produce different results. Using the setosa distribution as a reference in both plots, the LDA versicolor distribution is tighter (that is, wider and shorter) than the PCA one, causing its interquartile range to be further separated from the interquartile range of the virginica distribution. If this analysis is not rigorous enough for you, we can easily quantify this difference by using a clustering algorithm on the data. Let's use the k-means clustering algorithm to mathematically group the data together, and then use the quantitative metric called silhouette coefficient to score the tightness of the resulting clusters – a higher score means tighter clusters. Since the k-means algorithm is very straightforward and the quality of the grouping is directly related to the quality of the input data, tighter clusters will prove that the input features separate the classes better:

# cluster With k-means and check silhouette score
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score

# initialize k-means algo object
kmns = KMeans(n_clusters=3, random_state=42)

# fit algo to pca and find silhouette score
out_kms_pca = kmns.fit_predict(out_pca)
silhouette = silhouette_score(out_pca, out_kms_pca)
print("PCA silhouette score = " + str(silhouette))

# fit algo to lda and find silhouette score
out_kms_lda = kmns.fit_predict(out_lda)
silhouette = silhouette_score(out_lda, out_kms_lda)
print("LDA silhouette score = %2f " % silhouette)

The following output shows that the LDA classes are better separated: 

PCA silhouette score = 0.598
LDA silhouette score = 0.656

This makes sense because the LDA function had more information, namely, the classes to be separated. 

主站蜘蛛池模板: 东台市| 德兴市| 富锦市| 韶山市| 兴山县| 双牌县| 砀山县| 浮山县| 大余县| 耒阳市| 高阳县| 瑞昌市| 葵青区| 德化县| 湖口县| 墨竹工卡县| 阿图什市| 乌审旗| 深水埗区| 凤庆县| 酉阳| 浦城县| 酉阳| 股票| 股票| 邹平县| 元谋县| 望江县| 仙居县| 滨海县| 东莞市| 通山县| 东台市| 易门县| 远安县| 多伦县| 教育| 玛多县| 新邵县| 延川县| 乌兰浩特市|