- Python Data Mining Quick Start Guide
- Nathan Greeneltch
- 150字
- 2021-06-24 15:19:45
Installing high-performance Python distribution
Intel Corp has built a bundle of Python libraries with accelerations for High-Performance Computing (HPC) on CPUs. The vast majority of the accelerations come with no code changes, because they are snuck in under the hood. All the concepts and libraries introduced in the rest of the book will run faster in the HPC Intel Python environment. Luckily, Intel has a Conda version of their distribution, so you can add it as a new Conda environment via the following few command lines in the Anaconda prompt:
(base) $ Conda create -n idp -c channel intelpython3_full Python=3
(base) $ Conda activate idp
Full disclosure: I work for Intel, so I won't focus too much on this HPC distribution. I will merely let the performance numbers speak for themselves. See the following graph for raw speedup numbers (optimized versus stock) when using unchanged Scikit-learn code on CPU:

- 圖解PLC控制系統(tǒng)梯形圖和語句表
- 傳感器技術(shù)應(yīng)用
- 中國(guó)戰(zhàn)略性新興產(chǎn)業(yè)研究與發(fā)展·工業(yè)機(jī)器人
- 突破,Objective-C開發(fā)速學(xué)手冊(cè)
- Hadoop應(yīng)用開發(fā)基礎(chǔ)
- Dreamweaver CS6精彩網(wǎng)頁制作與網(wǎng)站建設(shè)
- 智能鼠原理與制作(進(jìn)階篇)
- 工業(yè)機(jī)器人實(shí)操進(jìn)階手冊(cè)
- Web編程基礎(chǔ)
- 工業(yè)機(jī)器人集成應(yīng)用
- 漢字錄入技能訓(xùn)練
- 貫通Java Web輕量級(jí)應(yīng)用開發(fā)
- 人工智能云平臺(tái):原理、設(shè)計(jì)與應(yīng)用
- Kubernetes on AWS
- 軟件測(cè)試設(shè)計(jì)