官术网_书友最值得收藏!

Activation functions

Activation functions are an integral part of any deep learning model. An activation function is a mathematical function that squashes the input values into a certain range. Suppose you feed in a neural network with real number inputs and initialize the weight matrix with random numbers and wish to use the output to classify; that is, you need the output value to be in between zero and one, but your neuron can output any value like -2.2453 or 17854.763. So, there is a need for scaling the output to a specific range. This is what an activation function does:

 

There are a lot of activation functions depending on the requirements. We will discuss some of the activation functions that are used quite often in deep learning.

主站蜘蛛池模板: 获嘉县| 万载县| 鄂尔多斯市| 平乡县| 东城区| 吉林省| 阿城市| 大足县| 水城县| 娄底市| 图们市| 凤山市| 潮安县| 遂川县| 南皮县| 巴青县| 云霄县| 凤庆县| 即墨市| 咸阳市| 宜兴市| 东兰县| 平乡县| 茶陵县| 城步| 太湖县| 册亨县| 酉阳| 牡丹江市| 崇州市| 珲春市| 乐平市| 合川市| 洛隆县| 承德县| 东丰县| 福安市| 上蔡县| 横山县| 安西县| 台南市|