官术网_书友最值得收藏!

Activation functions

Activation functions are an integral part of any deep learning model. An activation function is a mathematical function that squashes the input values into a certain range. Suppose you feed in a neural network with real number inputs and initialize the weight matrix with random numbers and wish to use the output to classify; that is, you need the output value to be in between zero and one, but your neuron can output any value like -2.2453 or 17854.763. So, there is a need for scaling the output to a specific range. This is what an activation function does:

 

There are a lot of activation functions depending on the requirements. We will discuss some of the activation functions that are used quite often in deep learning.

主站蜘蛛池模板: 无棣县| 漯河市| 嵩明县| 师宗县| 鄂尔多斯市| 本溪| 怀集县| 泰宁县| 元谋县| 正定县| 石台县| 临湘市| 额敏县| 桦甸市| 石棉县| 砚山县| 夏邑县| 阳山县| 黎平县| 鸡泽县| 阳城县| 磐安县| 漠河县| 兴隆县| 阿勒泰市| 车险| 察隅县| 柞水县| 灵山县| 平阴县| 乡宁县| 七台河市| 东宁县| 昌都县| 滨州市| 曲周县| 威宁| 呈贡县| 和龙市| 八宿县| 辛集市|