官术网_书友最值得收藏!

R-squared

Another popular metric that's used in regression problems is the R-squared score, or the coefficient of determination. This score measures the proportion of the variance in the dependent variable that is predictable from the independent variables:

Here,  represents the vector of actual values, while  and  represent the vector of predicted values. The mean actual value is . The denominator of the quotient measures how actual values typically differ from the mean, while the numerator measures how the actual values differ from the predicted values. Note that differences are squared, similar to MSE, and so large differences are penalized heavily.

In a perfect regressor, the numerator is 0, so the best possible value for R2 is 1.0. However, we can see arbitrarily large negative values when the prediction errors are significant. 

All four types of evaluation metrics are implemented in machine learning packages and are demonstrated in the following code examples. 

主站蜘蛛池模板: 通江县| 鹰潭市| 凤庆县| 张北县| 六盘水市| 高陵县| 德阳市| 安溪县| 赣榆县| 潞西市| 阿拉善右旗| 平泉县| 龙州县| 旅游| 玉溪市| 张家口市| 淮阳县| 凉山| 鄄城县| 云南省| 白城市| 淮滨县| 宁明县| 萨迦县| 房产| 望奎县| 虞城县| 慈利县| 双桥区| 金川县| 象州县| 汕尾市| 洪湖市| 繁昌县| 西安市| 祁连县| 和平区| 塔城市| 康马县| 德州市| 青浦区|