官术网_书友最值得收藏!

R-squared

Another popular metric that's used in regression problems is the R-squared score, or the coefficient of determination. This score measures the proportion of the variance in the dependent variable that is predictable from the independent variables:

Here,  represents the vector of actual values, while  and  represent the vector of predicted values. The mean actual value is . The denominator of the quotient measures how actual values typically differ from the mean, while the numerator measures how the actual values differ from the predicted values. Note that differences are squared, similar to MSE, and so large differences are penalized heavily.

In a perfect regressor, the numerator is 0, so the best possible value for R2 is 1.0. However, we can see arbitrarily large negative values when the prediction errors are significant. 

All four types of evaluation metrics are implemented in machine learning packages and are demonstrated in the following code examples. 

主站蜘蛛池模板: 永吉县| 措美县| 永泰县| 浏阳市| 墨竹工卡县| 克东县| 内丘县| 喀什市| 屏山县| 博爱县| 新和县| 普陀区| 若羌县| 曲靖市| 汾阳市| 蓝田县| 毕节市| 建阳市| 台北县| 鲁甸县| 鄂托克旗| 枣庄市| 宕昌县| 灵宝市| 洛浦县| 尖扎县| 承德市| 开封县| 安远县| 舒城县| 嘉定区| 宣汉县| 夹江县| 长宁县| 岳阳市| 宜君县| 周宁县| 昔阳县| 隆尧县| 霍林郭勒市| 宣威市|