官术网_书友最值得收藏!

Maximum likelihood estimation

Maximum likelihood estimation (MLE) is a popular model that's used for estimating the parameters of linear regression. MLE is a probabilistic model that can predict what values of the parameters have the maximum likelihood to recreate the observed dataset. This is represented by the following formula:

                           

For linear regression, our assumption is that the dependent variable has a linear relationship with the model. MLE assumes that the dependent variable values have a normal distribution. The idea is to predict the parameters for each observed value of X so that it models the value of y. We also estimate the error for each observed value that models how different the linear predicted value of y is from the actual value. 

主站蜘蛛池模板: 济阳县| 广河县| 沙坪坝区| 嘉祥县| 重庆市| 沁阳市| 甘谷县| 开封市| 富蕴县| 京山县| 手机| 兴安县| 崇明县| 深水埗区| 大悟县| 黄大仙区| 竹北市| 杭锦旗| 无棣县| 若尔盖县| 喀喇| 新源县| 抚顺县| 天台县| 徐闻县| 崇信县| 玉树县| 北辰区| 锦州市| 扶余县| 新巴尔虎左旗| 海门市| 洪江市| 铜梁县| 宣城市| 阿拉善盟| 凌源市| 班玛县| 六盘水市| 库车县| 融水|