- Mastering Machine Learning on AWS
- Dr. Saket S.R. Mengle Maximo Gurmendez
- 138字
- 2021-06-24 14:23:17
Maximum likelihood estimation
Maximum likelihood estimation (MLE) is a popular model that's used for estimating the parameters of linear regression. MLE is a probabilistic model that can predict what values of the parameters have the maximum likelihood to recreate the observed dataset. This is represented by the following formula:
For linear regression, our assumption is that the dependent variable has a linear relationship with the model. MLE assumes that the dependent variable values have a normal distribution. The idea is to predict the parameters for each observed value of X so that it models the value of y. We also estimate the error for each observed value that models how different the linear predicted value of y is from the actual value.
- Istio入門與實戰
- 電腦維護與故障排除傻瓜書(Windows 10適用)
- micro:bit魔法修煉之Mpython初體驗
- 分布式系統與一致性
- “硬”核:硬件產品成功密碼
- Python Machine Learning Blueprints
- Mastering Machine Learning on AWS
- 計算機電路基礎(第2版)
- USB應用開發寶典
- 筆記本電腦維修技能實訓
- 微服務架構基礎(Spring Boot+Spring Cloud+Docker)
- Raspberry Pi Home Automation with Arduino
- 創客電子:Arduino和Raspberry Pi智能制作項目精選
- The Reinforcement Learning Workshop
- DevOps實戰:VMware管理員運維方法、工具及最佳實踐