官术网_书友最值得收藏!

Maximum likelihood estimation

Maximum likelihood estimation (MLE) is a popular model that's used for estimating the parameters of linear regression. MLE is a probabilistic model that can predict what values of the parameters have the maximum likelihood to recreate the observed dataset. This is represented by the following formula:

                           

For linear regression, our assumption is that the dependent variable has a linear relationship with the model. MLE assumes that the dependent variable values have a normal distribution. The idea is to predict the parameters for each observed value of X so that it models the value of y. We also estimate the error for each observed value that models how different the linear predicted value of y is from the actual value. 

主站蜘蛛池模板: 河东区| 拜泉县| 防城港市| 龙井市| 田东县| 长葛市| 剑河县| 绵竹市| 会理县| 文化| 屏东市| 法库县| 福安市| 大冶市| 开平市| 扶风县| 佛教| 大安市| 闵行区| 铁岭市| 嵩明县| 遂昌县| 临泉县| 昌乐县| 丰顺县| 鲁山县| 莎车县| 封丘县| 吴堡县| 德令哈市| 金塔县| 吕梁市| 资中县| 灵山县| 泌阳县| 自贡市| 高台县| 甘谷县| 石景山区| 积石山| 禹城市|