- Deep Learning with R for Beginners
- Mark Hodnett Joshua F. Wiley Yuxi (Hayden) Liu Pablo Maldonado
- 124字
- 2021-06-24 14:30:44
Training Deep Prediction Models
The previous chapters covered a bit of the theory behind neural networks and used some neural network packages in R. Now it is time to dive in and look at training deep learning models. In this chapter, we will explore how to train and build feedforward neural networks, which are the most common type of deep learning model. We will use MXNet to build deep learning models to perform classification and regression using a retail dataset.
This chapter will cover the following topics:
- Getting started with deep feedforward neural networks
- Common activation functions – rectifiers, hyperbolic tangent, and maxout
- Introduction to the MXNet deep learning library
- Use case – Using MXNet for classification and regression
推薦閱讀
- 數(shù)據(jù)挖掘原理與實(shí)踐
- 正則表達(dá)式必知必會(huì)
- 商業(yè)分析思維與實(shí)踐:用數(shù)據(jù)分析解決商業(yè)問(wèn)題
- Microsoft Power BI數(shù)據(jù)可視化與數(shù)據(jù)分析
- 大數(shù)據(jù)技術(shù)入門
- Hadoop集群與安全
- 活用數(shù)據(jù):驅(qū)動(dòng)業(yè)務(wù)的數(shù)據(jù)分析實(shí)戰(zhàn)
- 企業(yè)大數(shù)據(jù)處理:Spark、Druid、Flume與Kafka應(yīng)用實(shí)踐
- 改進(jìn)的群智能算法及其應(yīng)用
- 數(shù)據(jù)指標(biāo)體系:構(gòu)建方法與應(yīng)用實(shí)踐
- Visual Studio 2012 and .NET 4.5 Expert Development Cookbook
- 云原生架構(gòu):從技術(shù)演進(jìn)到最佳實(shí)踐
- 掌中寶:電腦綜合應(yīng)用技巧
- Redis 6開(kāi)發(fā)與實(shí)戰(zhàn)
- Mastering Java for Data Science