- Deep Learning with R for Beginners
- Mark Hodnett Joshua F. Wiley Yuxi (Hayden) Liu Pablo Maldonado
- 124字
- 2021-06-24 14:30:44
Training Deep Prediction Models
The previous chapters covered a bit of the theory behind neural networks and used some neural network packages in R. Now it is time to dive in and look at training deep learning models. In this chapter, we will explore how to train and build feedforward neural networks, which are the most common type of deep learning model. We will use MXNet to build deep learning models to perform classification and regression using a retail dataset.
This chapter will cover the following topics:
- Getting started with deep feedforward neural networks
- Common activation functions – rectifiers, hyperbolic tangent, and maxout
- Introduction to the MXNet deep learning library
- Use case – Using MXNet for classification and regression
推薦閱讀
- Voice Application Development for Android
- 大數據可視化
- 文本數據挖掘:基于R語言
- 深入淺出數字孿生
- Sybase數據庫在UNIX、Windows上的實施和管理
- Python醫學數據分析入門
- Starling Game Development Essentials
- Oracle 12c云數據庫備份與恢復技術
- 云數據中心網絡與SDN:技術架構與實現
- IPython Interactive Computing and Visualization Cookbook(Second Edition)
- Hadoop大數據開發案例教程與項目實戰(在線實驗+在線自測)
- 跨領域信息交換方法與技術(第二版)
- 大數據技術原理與應用:概念、存儲、處理、分析與應用
- Oracle 11g數據庫管理與開發基礎教程
- 推薦系統全鏈路設計:原理解讀與業務實踐