- Advanced Machine Learning with R
- Cory Lesmeister Dr. Sunil Kumar Chinnamgari
- 252字
- 2021-06-24 14:24:36
Logistic Regression
In the previous chapter, we took a look at using Ordinary Least Squares (OLS) to predict a quantitative outcome or, in other words, linear regression. It's now time to shift gears somewhat and examine how we can develop algorithms to predict qualitative outcomes. Such outcome variables could be binary (male versus female, purchase versus doesn't purchase, or a tumor is benign versus malignant) or multinomial categories (education level or eye color). Regardless of whether the outcome of interest is binary or multinomial, our task is to predict the probability of an observation belonging to a particular category of the outcome variable. In other words, we develop an algorithm to classify the observations.
To begin exploring classification problems, we'll discuss why applying the OLS linear regression isn't the correct technique and how the algorithms introduced in this chapter can solve these issues. We'll then look at the problem of predicting whether or not a banking customer is satisfied. To tackle this problem, we'll begin by building and interpreting a logistic regression model. We'll also start examining a univariate method to select features. Next, we'll turn to multivariate regression splines and discover ways to choose the best overall algorithm. This chapter will set the stage for more advanced machine learning methods in subsequent chapters.
We'll be covering the following topics in this chapter:
- Classification methods and linear regression
- Logistic regression
- Model training and evaluation
- Arduino入門基礎教程
- 觸摸屏實用技術與工程應用
- Aftershot Pro:Non-destructive photo editing and management
- 網絡服務器配置與管理(第3版)
- Python GUI Programming:A Complete Reference Guide
- Android NDK Game Development Cookbook
- OpenGL Game Development By Example
- 超大流量分布式系統架構解決方案:人人都是架構師2.0
- FL Studio Cookbook
- 單片機原理與技能訓練
- 計算機電路基礎(第2版)
- The Reinforcement Learning Workshop
- The Machine Learning Workshop
- Nagios系統監控實踐(原書第2版)
- Spring Cloud微服務架構開發