官术网_书友最值得收藏!

Further readings

  1. https://www.crunchbase.com/hub/machine-learning-companies, retrieved on February 9, 2019.
  2. https://www.ft.com/content/133dc9c8-90ac-11e8-9609-3d3b945e78cf. Machine Learning will be the global engine of growth.
  3. https://news.crunchbase.com/news/venture-funding-ai-machine-learning-levels-off-tech-matures/. Retrieved on February 9, 2019.
  4. https://www.economist.com/science-and-technology/2018/02/15/for-artificial-intelligence-to-thrive-it-must-explain-itself. Retrieved on February 9, 2019.
  5. https://www.nytimes.com/column/machine-learning. Retrieved on February 9th 2019.
  6. See for example Google Trends for Machine Learning. https://trends.google.com/trends/explore?date=all&geo=US&q=machine%20learning.
  7. R. Kohavi and F. Provost, Glossary of Terms, Machine Learning, vol. 30, no. 2–3, pp. 271–274, 1998. 30, no. 2–3, pp. 271–274, 1998.
  8. Turing, Alan (October 1950). Computing Machinery and Intelligence. Mind. 59 (236): 433–460. doi:10.1093/mind/LIX.236.433. Retrieved 8 June 2016.016.
  9. https://www.forbes.com/sites/bernardmarr/2016/12/06/what-is-the-difference-between-artificial-intelligence-and-machine-learning/. Retrieved on February 9, 2019.
  10. https://talks.golang.org/2012/splash.article. Retrieved February 9, 2019.
  11. https://talks.golang.org/2012/splash.article. Retrieved February 9,h 2019.
  12. https://insights.stackoverflow.com/survey/2018/. Retrieved February 9, 2019.
  1. https://github.com/cloudflare. Retrieved February 9, 2019.
  2. https://github.com/uber. Retrieved February 9, 2019.
  3. https://github.com/dailymotion. Retrieved February 9, 2019.
  4. https://github.com/medium. Retrieved February 9, 2019.
  5. https://github.com/sjwhitworth/golearn. Retrieved on 10, February 2019.
  6. See the MNIST dataset hosted at http://yann.lecun.com/exdb/mnist/. Retrieved February 10, 2019.
  7. See https://machinelearningmastery.com/handwritten-digit-recognition-using-convolutional-neural-networks-python-keras/ for an example. Retrieved February 10, 2019.
  8. http://cognitivemedium.com/rmnist. Retrieved February 10, 2019.
  9. Regression Models to Predict Corrected Weight, Height and Obesity Prevalence From Self-Reported Data: data from BRFSS 1999-2007. Int J Obes (Lond). 2010 Nov; 34(11):1655-64. doi: 10.1038/ijo.2010.80. Epub 2010 Apr 13.
  10. https://deepmind.com/blog/alphago-zero-learning-scratch/. Retrieved February 10th, 2019.
  11. Focal Loss for Dense Object Detection. Lin et al. ICCV 2980-2988. Pre-print available at https://arxiv.org/pdf/1708.02002.pdf.
主站蜘蛛池模板: 安化县| 保山市| 玉环县| 崇礼县| 江津市| 宜兰县| 图木舒克市| 南陵县| 宿松县| 彭水| 固阳县| 南开区| 谢通门县| 洛扎县| 临高县| 朝阳市| 渭南市| 临猗县| 永平县| 鲁甸县| 鄂州市| 江源县| 信阳市| 深水埗区| 会昌县| 山阳县| 乌拉特中旗| 姚安县| 疏勒县| 安达市| 朔州市| 张家港市| 寿阳县| 依兰县| 沂水县| 南溪县| 长汀县| 永平县| 腾冲县| 祥云县| 湄潭县|