官术网_书友最值得收藏!

How to do it...

Creating an MDP can be done via the following steps:

  1. Import PyTorch and define the transition matrix:
 >>> import torch
>>> T = torch.tensor([[[0.8, 0.1, 0.1],
... [0.1, 0.6, 0.3]],
... [[0.7, 0.2, 0.1],
... [0.1, 0.8, 0.1]],
... [[0.6, 0.2, 0.2],
... [0.1, 0.4, 0.5]]]
... )
  1. Define the reward function and the discount factor:
 >>> R = torch.tensor([1., 0, -1.])
>>> gamma = 0.5
  1. The optimal policy in this case is selecting action a0 in all circumstances:
>>> action = 0
  1. We calculate the value, V, of the optimal policy using the matrix inversion method in the following function:
 >>> def cal_value_matrix_inversion(gamma, trans_matrix, rewards):
... inv = torch.inverse(torch.eye(rewards.shape[0])
- gamma * trans_matrix)
... V = torch.mm(inv, rewards.reshape(-1, 1))
... return V

We will demonstrate how to derive the value in the next section.

  1. We feed all variables we have to the function, including the transition probabilities associated with action a0:
 >>> trans_matrix = T[:, action]
>>> V = cal_value_matrix_inversion(gamma, trans_matrix, R)
>>> print("The value function under the optimal
policy is:\n{}".format(V))
The value function under the optimal policy is:
tensor([[ 1.6787],
[ 0.6260],
[-0.4820]])
主站蜘蛛池模板: 兴山县| 邳州市| 甘孜县| 万山特区| 漳平市| 德格县| 赞皇县| 宜春市| 齐齐哈尔市| 石河子市| 白山市| 阳信县| 逊克县| 霞浦县| 衢州市| 多伦县| 迁西县| 普定县| 合川市| 福鼎市| 乡宁县| 澳门| 当阳市| 黑龙江省| 贡觉县| 邵阳市| 莲花县| 和平区| 赤水市| 无锡市| 深水埗区| 什邡市| 泗阳县| 德江县| 化德县| 绵阳市| 沂南县| 晋中市| 常山县| 永春县| 昆明市|