- PyTorch 1.x Reinforcement Learning Cookbook
- Yuxi (Hayden) Liu
- 192字
- 2021-06-24 12:34:45
How to do it...
Creating an MDP can be done via the following steps:
- Import PyTorch and define the transition matrix:
>>> import torch
>>> T = torch.tensor([[[0.8, 0.1, 0.1],
... [0.1, 0.6, 0.3]],
... [[0.7, 0.2, 0.1],
... [0.1, 0.8, 0.1]],
... [[0.6, 0.2, 0.2],
... [0.1, 0.4, 0.5]]]
... )
- Define the reward function and the discount factor:
>>> R = torch.tensor([1., 0, -1.])
>>> gamma = 0.5
- The optimal policy in this case is selecting action a0 in all circumstances:
>>> action = 0
- We calculate the value, V, of the optimal policy using the matrix inversion method in the following function:
>>> def cal_value_matrix_inversion(gamma, trans_matrix, rewards):
... inv = torch.inverse(torch.eye(rewards.shape[0])
- gamma * trans_matrix)
... V = torch.mm(inv, rewards.reshape(-1, 1))
... return V
We will demonstrate how to derive the value in the next section.
- We feed all variables we have to the function, including the transition probabilities associated with action a0:
>>> trans_matrix = T[:, action]
>>> V = cal_value_matrix_inversion(gamma, trans_matrix, R)
>>> print("The value function under the optimal
policy is:\n{}".format(V))
The value function under the optimal policy is:
tensor([[ 1.6787],
[ 0.6260],
[-0.4820]])
推薦閱讀
- 基于LabWindows/CVI的虛擬儀器設計與應用
- 控制與決策系統仿真
- 腦動力:PHP函數速查效率手冊
- 網絡綜合布線技術
- 80x86/Pentium微型計算機原理及應用
- 觸控顯示技術
- Implementing AWS:Design,Build,and Manage your Infrastructure
- Mastering ServiceNow Scripting
- 從零開始學Java Web開發
- 大數據案例精析
- Artificial Intelligence By Example
- 寒江獨釣:Windows內核安全編程
- Dreamweaver+Photoshop+Flash+Fireworks網站建設與網頁設計完全實用
- 重估:人工智能與賦能社會
- 21天學通Linux嵌入式開發