官术网_书友最值得收藏!

How to do it...

In the following steps, we utilize scikit-learn's StandardScaler method to standardize our data:

  1. Start by importing the required libraries and gathering a dataset, X:
import pandas as pd

data = pd.read_csv("file_pe_headers.csv", sep=",")
X = data.drop(["Name", "Malware"], axis=1).to_numpy()

Dataset X looks as follows:

  1. Next, standardize X using a StandardScaler instance:
from sklearn.preprocessing import StandardScaler

X_standardized = StandardScaler().fit_transform(X)

The standardized dataset looks like the following:

主站蜘蛛池模板: 河南省| 襄汾县| 甘泉县| 玛纳斯县| 马龙县| 毕节市| 紫云| 天峨县| 阿拉善左旗| 安多县| 南开区| 乐亭县| 清徐县| 永丰县| 汉川市| 南部县| 建湖县| 肥西县| 应城市| 长岭县| 邹城市| 武宁县| 东乡县| 湘潭市| 鹰潭市| 北辰区| 平邑县| 武邑县| 汾西县| 美姑县| 清原| 新建县| 右玉县| 北流市| 漳平市| 九龙城区| 萨嘎县| 灌南县| 石嘴山市| 始兴县| 沈阳市|