官术网_书友最值得收藏!

How to do it...

In the following steps, we utilize scikit-learn's StandardScaler method to standardize our data:

  1. Start by importing the required libraries and gathering a dataset, X:
import pandas as pd

data = pd.read_csv("file_pe_headers.csv", sep=",")
X = data.drop(["Name", "Malware"], axis=1).to_numpy()

Dataset X looks as follows:

  1. Next, standardize X using a StandardScaler instance:
from sklearn.preprocessing import StandardScaler

X_standardized = StandardScaler().fit_transform(X)

The standardized dataset looks like the following:

主站蜘蛛池模板: 揭阳市| 鲁甸县| 剑川县| 山阴县| 侯马市| 自贡市| 昆山市| 霍城县| 海丰县| 莱阳市| 延庆县| 铅山县| 泽普县| 铜陵市| 叙永县| 亳州市| 阜康市| 平度市| 佛山市| 侯马市| 时尚| 宿松县| 修文县| 尼木县| 北京市| 灌云县| 嘉鱼县| 丹江口市| 临沭县| 中江县| 金乡县| 汤原县| 凌海市| 普陀区| 五台县| 遂溪县| 凌海市| 会理县| 郎溪县| 崇信县| 井研县|