- Machine Learning for Cybersecurity Cookbook
- Emmanuel Tsukerman
- 68字
- 2021-06-24 12:28:55
How to do it...
In the following steps, we utilize scikit-learn's StandardScaler method to standardize our data:
- Start by importing the required libraries and gathering a dataset, X:
import pandas as pd
data = pd.read_csv("file_pe_headers.csv", sep=",")
X = data.drop(["Name", "Malware"], axis=1).to_numpy()
Dataset X looks as follows:

- Next, standardize X using a StandardScaler instance:
from sklearn.preprocessing import StandardScaler
X_standardized = StandardScaler().fit_transform(X)
The standardized dataset looks like the following:

推薦閱讀
- 玩轉(zhuǎn)智能機(jī)器人程小奔
- SCRATCH與機(jī)器人
- 網(wǎng)上沖浪
- Natural Language Processing Fundamentals
- Hands-On Data Science with SQL Server 2017
- 微型計(jì)算機(jī)控制技術(shù)
- 物聯(lián)網(wǎng)與云計(jì)算
- 計(jì)算機(jī)圖形圖像處理:Photoshop CS3
- 數(shù)據(jù)庫(kù)原理與應(yīng)用技術(shù)
- Associations and Correlations
- 21天學(xué)通Java Web開(kāi)發(fā)
- 網(wǎng)絡(luò)安全技術(shù)及應(yīng)用
- Artificial Intelligence By Example
- Ansible 2 Cloud Automation Cookbook
- INSTANT Adobe Story Starter