- Machine Learning for Cybersecurity Cookbook
- Emmanuel Tsukerman
- 68字
- 2021-06-24 12:28:55
How to do it...
In the following steps, we utilize scikit-learn's StandardScaler method to standardize our data:
- Start by importing the required libraries and gathering a dataset, X:
import pandas as pd
data = pd.read_csv("file_pe_headers.csv", sep=",")
X = data.drop(["Name", "Malware"], axis=1).to_numpy()
Dataset X looks as follows:

- Next, standardize X using a StandardScaler instance:
from sklearn.preprocessing import StandardScaler
X_standardized = StandardScaler().fit_transform(X)
The standardized dataset looks like the following:

推薦閱讀
- 輕輕松松自動化測試
- 軟件架構設計
- 影視后期制作(Avid Media Composer 5.0)
- 電腦上網直通車
- 水晶石精粹:3ds max & ZBrush三維數字靜幀藝術
- Photoshop CS3圖層、通道、蒙版深度剖析寶典
- Cloudera Administration Handbook
- 零起點學西門子S7-200 PLC
- 基于神經網絡的監督和半監督學習方法與遙感圖像智能解譯
- R Machine Learning Projects
- Excel 2007終極技巧金典
- 嵌入式Linux系統實用開發
- 21天學通Linux嵌入式開發
- Cortex-M3嵌入式處理器原理與應用
- NetSuite ERP for Administrators