官术网_书友最值得收藏!

Machine Learning for Cybersecurity

In this chapter, we will cover the fundamental techniques of machine learning. We will use these throughout the book to solve interesting cybersecurity problems. We will cover both foundational algorithms, such as clustering and gradient boosting trees, and solutions to common data challenges, such as imbalanced data and false-positive constraints. A machine learning practitioner in cybersecurity is in a unique and exciting position to leverage enormous amounts of data and create solutions in a constantly evolving landscape.

This chapter covers the following recipes:

  • Train-test-splitting your data
  • Standardizing your data
  • Summarizing large data using principal component analysis (PCA)
  • Generating text using Markov chains
  • Performing clustering using scikit-learn
  • Training an XGBoost classifier
  • Analyzing time series using statsmodels
  • Anomaly detection using Isolation Forest
  • Natural language processing (NLP) using hashing vectorizer and tf-idf with scikit-learn
  • Hyperparameter tuning with scikit-optimize

主站蜘蛛池模板: 灵武市| 肃南| 敦煌市| 林西县| 乌苏市| 汕头市| 淮滨县| 巨野县| 闽清县| 塘沽区| 中超| 务川| 湘阴县| 安化县| 西城区| 左贡县| 将乐县| 宣化县| 溆浦县| 方正县| 阿尔山市| 张家口市| 汉沽区| 喜德县| 梨树县| 高平市| 易门县| 福安市| 若尔盖县| 建阳市| 金川县| 渭源县| 民乐县| 河津市| 岫岩| 青田县| 毕节市| 屏山县| 沙湾县| 新乡市| 武城县|