- Machine Learning for Cybersecurity Cookbook
- Emmanuel Tsukerman
- 140字
- 2021-06-24 12:28:54
Machine Learning for Cybersecurity
In this chapter, we will cover the fundamental techniques of machine learning. We will use these throughout the book to solve interesting cybersecurity problems. We will cover both foundational algorithms, such as clustering and gradient boosting trees, and solutions to common data challenges, such as imbalanced data and false-positive constraints. A machine learning practitioner in cybersecurity is in a unique and exciting position to leverage enormous amounts of data and create solutions in a constantly evolving landscape.
This chapter covers the following recipes:
- Train-test-splitting your data
- Standardizing your data
- Summarizing large data using principal component analysis (PCA)
- Generating text using Markov chains
- Performing clustering using scikit-learn
- Training an XGBoost classifier
- Analyzing time series using statsmodels
- Anomaly detection using Isolation Forest
- Natural language processing (NLP) using hashing vectorizer and tf-idf with scikit-learn
- Hyperparameter tuning with scikit-optimize
推薦閱讀
- 輕輕松松自動(dòng)化測(cè)試
- Visualforce Development Cookbook(Second Edition)
- 工業(yè)機(jī)器人入門(mén)實(shí)用教程(KUKA機(jī)器人)
- JBoss ESB Beginner’s Guide
- 信息物理系統(tǒng)(CPS)測(cè)試與評(píng)價(jià)技術(shù)
- 工業(yè)機(jī)器人安裝與調(diào)試
- 基于神經(jīng)網(wǎng)絡(luò)的監(jiān)督和半監(jiān)督學(xué)習(xí)方法與遙感圖像智能解譯
- 在實(shí)戰(zhàn)中成長(zhǎng):Windows Forms開(kāi)發(fā)之路
- C++程序設(shè)計(jì)基礎(chǔ)(上)
- Spark大數(shù)據(jù)商業(yè)實(shí)戰(zhàn)三部曲:內(nèi)核解密|商業(yè)案例|性能調(diào)優(yōu)
- 貫通Hibernate開(kāi)發(fā)
- Learning Couchbase
- 傳感器應(yīng)用技術(shù)
- Intel Edison Projects
- Learning VMware App Volumes