官术网_书友最值得收藏!

Machine Learning for Cybersecurity

In this chapter, we will cover the fundamental techniques of machine learning. We will use these throughout the book to solve interesting cybersecurity problems. We will cover both foundational algorithms, such as clustering and gradient boosting trees, and solutions to common data challenges, such as imbalanced data and false-positive constraints. A machine learning practitioner in cybersecurity is in a unique and exciting position to leverage enormous amounts of data and create solutions in a constantly evolving landscape.

This chapter covers the following recipes:

  • Train-test-splitting your data
  • Standardizing your data
  • Summarizing large data using principal component analysis (PCA)
  • Generating text using Markov chains
  • Performing clustering using scikit-learn
  • Training an XGBoost classifier
  • Analyzing time series using statsmodels
  • Anomaly detection using Isolation Forest
  • Natural language processing (NLP) using hashing vectorizer and tf-idf with scikit-learn
  • Hyperparameter tuning with scikit-optimize

主站蜘蛛池模板: 大新县| 洪泽县| 年辖:市辖区| 卢湾区| 高雄县| 长沙县| 肃南| 盘锦市| 青岛市| 宜宾县| 张掖市| 肃北| 长治县| 固阳县| 哈尔滨市| 桑植县| 安庆市| 确山县| 康定县| 蓬安县| 武功县| 若羌县| 青铜峡市| 永州市| 菏泽市| 芜湖县| 龙游县| 嘉荫县| 滦平县| 合山市| 巩义市| 乌拉特后旗| 金平| 三穗县| 江达县| 曲水县| 内江市| 德令哈市| 大余县| 亚东县| 怀远县|