- Machine Learning for Cybersecurity Cookbook
- Emmanuel Tsukerman
- 70字
- 2021-06-24 12:29:08
Selecting the best N-grams
The number of different N-grams grows exponentially in N. Even for a fixed tiny N, such as N=3, there are 256x256x256=16,777,216 possible N-grams. This means that the number of N-grams features is impracticably large. Consequently, we must select a smaller subset of N-grams that will be of most value to our classifiers. In this section, we show three different methods for selecting the topmost informative N-grams.
推薦閱讀
- 高性能混合信號ARM:ADuC7xxx原理與應用開發
- 人工免疫算法改進及其應用
- CSS全程指南
- 視覺檢測技術及智能計算
- CompTIA Network+ Certification Guide
- MATLAB/Simulink權威指南:開發環境、程序設計、系統仿真與案例實戰
- 悟透AutoCAD 2009完全自學手冊
- Deep Reinforcement Learning Hands-On
- 電子設備及系統人機工程設計(第2版)
- PLC與變頻技術應用
- MATLAB-Simulink系統仿真超級學習手冊
- Mastering OpenStack(Second Edition)
- JRuby語言實戰技術
- JSP通用范例開發金典
- Spark Streaming實時流式大數據處理實戰