- Hands-On Machine Learning with ML.NET
- Jarred Capellman
- 158字
- 2021-06-24 16:43:36
Breaking down classification models
As mentioned in Chapter 1, Getting Started with Machine Learning and ML.NET, classification is broken down into two main categories—two-class and multi-class. In a two-class classifier, also known as a binary classifier, the prediction simply returns 0 or 1. In a multi-class problem, a pre-selected range of return labels, such as virus types or car types, is returned.
There are several binary classification model types available in the machine learning ecosystem to choose from, as follows:
- AveragedPerceptronTrainer
- SdcaLogisticRegressionBinaryTrainer
- SdcaNonCalibratedBinaryTrainer
- SymbolicSgdLogisticRegressionBinaryTrainer
- LbfgsLogisticRegressionBinaryTrainer
- LightGbmBinaryTrainer
- FastTreeBinaryTrainer
- FastForestBinaryTrainer
- GamBinaryTrainer
- FieldAwareFactorizationMachineTrainer
- PriorTrainer
- LinearSvmTrainer
The car-value application we will be creating later in this chapter utilizes the FastTreeBinaryTrainer model.
ML.NET also provides the following multi-class classifiers:
- LightGbmMulticlassTrainer
- SdcaMaximumEntropyMulticlassTrainer
- SdcaNonCalibratedMulticlassTrainer
- LbfgsMaximumEntropyMulticlassTrainer
- NaiveBayesMulticlassTrainer
- OneVersusAllTrainer
- PairwiseCouplingTrainer
For the multi-class classifier example application, we will be using the SdcaMaximumEntropyMulticlassTrainer model. The reason for this is that Stochastic Dual Coordinate Ascents (SDCAs) can provide a good default performance without tuning.
- SPSS數(shù)據(jù)挖掘與案例分析應(yīng)用實踐
- DevOps with Kubernetes
- Elastic Stack應(yīng)用寶典
- Mastering macOS Programming
- 人人都懂設(shè)計模式:從生活中領(lǐng)悟設(shè)計模式(Python實現(xiàn))
- 從零開始學(xué)C#
- Scala編程實戰(zhàn)
- Web編程基礎(chǔ):HTML5、CSS3、JavaScript(第2版)
- SQL Server 2008實用教程(第3版)
- MongoDB Administrator’s Guide
- 基于MATLAB的控制系統(tǒng)仿真及應(yīng)用
- C#程序開發(fā)參考手冊
- Mastering R for Quantitative Finance
- Perl 6 Deep Dive
- ASP.NET 3.5系統(tǒng)開發(fā)精髓