官术网_书友最值得收藏!

Breaking down classification models

As mentioned in Chapter 1, Getting Started with Machine Learning and ML.NET, classification is broken down into two main categories—two-class and multi-class. In a two-class classifier, also known as a binary classifier, the prediction simply returns 0 or 1. In a multi-class problem, a pre-selected range of return labels, such as virus types or car types, is returned.  

There are several binary classification model types available in the machine learning ecosystem to choose from, as follows:

  • AveragedPerceptronTrainer
  • SdcaLogisticRegressionBinaryTrainer
  • SdcaNonCalibratedBinaryTrainer
  • SymbolicSgdLogisticRegressionBinaryTrainer
  • LbfgsLogisticRegressionBinaryTrainer
  • LightGbmBinaryTrainer
  • FastTreeBinaryTrainer
  • FastForestBinaryTrainer
  • GamBinaryTrainer
  • FieldAwareFactorizationMachineTrainer
  • PriorTrainer
  • LinearSvmTrainer

The car-value application we will be creating later in this chapter utilizes the FastTreeBinaryTrainer model.

ML.NET also provides the following multi-class classifiers:

  • LightGbmMulticlassTrainer
  • SdcaMaximumEntropyMulticlassTrainer
  • SdcaNonCalibratedMulticlassTrainer
  • LbfgsMaximumEntropyMulticlassTrainer
  • NaiveBayesMulticlassTrainer
  • OneVersusAllTrainer
  • PairwiseCouplingTrainer

For the multi-class classifier example application, we will be using the SdcaMaximumEntropyMulticlassTrainer model. The reason for this is that Stochastic Dual Coordinate Ascents (SDCAs) can provide a good default performance without tuning.

主站蜘蛛池模板: 六盘水市| 平凉市| 巴楚县| 高台县| 从化市| 孙吴县| 祥云县| 宁波市| 出国| 蕉岭县| 土默特右旗| 横峰县| 嘉黎县| 阿勒泰市| 如东县| 固始县| 陇南市| 乌兰察布市| 冕宁县| 广东省| 清新县| 安岳县| 吴堡县| 疏勒县| 铜梁县| 盈江县| 盈江县| 康定县| 乐陵市| 江油市| 通州市| 宁武县| 宕昌县| 开化县| 游戏| 班戈县| 呼伦贝尔市| 咸阳市| 汶川县| 启东市| 项城市|