官术网_书友最值得收藏!

Breaking down classification models

As mentioned in Chapter 1, Getting Started with Machine Learning and ML.NET, classification is broken down into two main categories—two-class and multi-class. In a two-class classifier, also known as a binary classifier, the prediction simply returns 0 or 1. In a multi-class problem, a pre-selected range of return labels, such as virus types or car types, is returned.  

There are several binary classification model types available in the machine learning ecosystem to choose from, as follows:

  • AveragedPerceptronTrainer
  • SdcaLogisticRegressionBinaryTrainer
  • SdcaNonCalibratedBinaryTrainer
  • SymbolicSgdLogisticRegressionBinaryTrainer
  • LbfgsLogisticRegressionBinaryTrainer
  • LightGbmBinaryTrainer
  • FastTreeBinaryTrainer
  • FastForestBinaryTrainer
  • GamBinaryTrainer
  • FieldAwareFactorizationMachineTrainer
  • PriorTrainer
  • LinearSvmTrainer

The car-value application we will be creating later in this chapter utilizes the FastTreeBinaryTrainer model.

ML.NET also provides the following multi-class classifiers:

  • LightGbmMulticlassTrainer
  • SdcaMaximumEntropyMulticlassTrainer
  • SdcaNonCalibratedMulticlassTrainer
  • LbfgsMaximumEntropyMulticlassTrainer
  • NaiveBayesMulticlassTrainer
  • OneVersusAllTrainer
  • PairwiseCouplingTrainer

For the multi-class classifier example application, we will be using the SdcaMaximumEntropyMulticlassTrainer model. The reason for this is that Stochastic Dual Coordinate Ascents (SDCAs) can provide a good default performance without tuning.

主站蜘蛛池模板: 崇信县| 鲁山县| 永昌县| 武邑县| 黔南| 玉田县| 平凉市| 抚州市| 吉安县| 岱山县| 南投市| 焦作市| 彩票| 阳东县| 如皋市| 铜川市| 隆回县| 绥化市| 攀枝花市| 虞城县| 景东| 宁安市| 视频| 施甸县| 云和县| 乐清市| 醴陵市| 奇台县| 行唐县| 涿州市| 廊坊市| 正镶白旗| 顺昌县| 安庆市| 比如县| 正宁县| 紫阳县| 文化| 大化| 西充县| 应城市|