- Hands-On Machine Learning with ML.NET
- Jarred Capellman
- 97字
- 2021-06-24 16:43:31
Breaking down regression models
While there are several regression model types available in the machine learning eco-system, there are two primary regression models groups: linear and logistic, both of which have rich implementations in ML.NET.
ML.NET provides the following linear regression trainers:
- FastTreeRegressionTrainer
- FastTreeTweedieTrainer
- FastForestRegressionTrainer
- GamRegressionTrainer
- LbfgsPoissonRegressionTrainer
- LightGbmRegressionTrainer
- OlsTrainer
- OnlineGradientDescentTrainer
- SdcaRegressionTrainer
The employee attrition application we will be creating later in this chapter utilizes the linear regression SDCA trainer.
In addition, ML.NET provides the following binary logistic regression trainers:
- LbfgsLogisticRegressionBinaryTrainer
- SdcaLogisticRegressionBinaryTrainer
- SdcaNonCalibratedBinaryTrainer
- SymbolicSgdLogisticRegressionBinaryTrainer
For the file classification application, we will be utilizing the SDCALogisticRegressionBinaryTrainer model.
推薦閱讀
- Learning Cython Programming
- Developing Mobile Web ArcGIS Applications
- C/C++算法從菜鳥到達人
- Reactive Programming with Swift
- CentOS 7 Linux Server Cookbook(Second Edition)
- 重學Java設(shè)計模式
- 劍指MySQL:架構(gòu)、調(diào)優(yōu)與運維
- ServiceNow:Building Powerful Workflows
- Internet of Things with ESP8266
- Windows Embedded CE 6.0程序設(shè)計實戰(zhàn)
- Visual Studio 2015高級編程(第6版)
- Flowable流程引擎實戰(zhàn)
- Python開發(fā)基礎(chǔ)
- Practical GIS
- Python網(wǎng)絡(luò)爬蟲實例教程(視頻講解版)