- Hands-On Machine Learning with ML.NET
- Jarred Capellman
- 83字
- 2021-06-24 16:43:26
Anomaly detection
Anomaly detection, as the name implies, looks for unexpected events in the data submitted to the model. Data for this algorithm, as you can probably guess, requires data over a period of time. Anomaly detection in ML.NET looks at both spikes and change points. Spikes, as the name implies, are temporary, whereas change points are the starting points of a longer change.
ML.NET provides an anomaly detection algorithm, which we will cover in Chapter 6, Anomaly Detection Model.
推薦閱讀
- 軟件安全技術
- AWS Serverless架構:使用AWS從傳統(tǒng)部署方式向Serverless架構遷移
- Visual Basic程序設計教程
- Web交互界面設計與制作(微課版)
- JMeter 性能測試實戰(zhàn)(第2版)
- Python自動化運維快速入門
- Gradle for Android
- 可解釋機器學習:模型、方法與實踐
- 機器學習與R語言實戰(zhàn)
- OpenCV with Python By Example
- Delphi開發(fā)典型模塊大全(修訂版)
- Raspberry Pi Blueprints
- Learning WordPress REST API
- C# 10核心技術指南
- 系統(tǒng)分析師UML用例實戰(zhàn)