官术网_书友最值得收藏!

Removing NaN values

Next, we are going to remove NaN values from the field.

We can do this as follows:

dfs = dfs[dfs['date'].notna()]

Next, it is good to save the preprocessed file into a separate CSV file in case we need it again. We can save the dataframe into a separate CSV file as follows:

dfs.to_csv('gmail.csv')

Great! Having done that, let's do some descriptive statistics. 

主站蜘蛛池模板: 望奎县| 利川市| 通辽市| 大荔县| 珲春市| 西乡县| 乡城县| 东宁县| 扎鲁特旗| 故城县| 新津县| 嘉兴市| 车险| 名山县| 文登市| 酒泉市| 始兴县| 清苑县| 中阳县| 久治县| 海门市| 九龙坡区| 伊春市| 滕州市| 阳春市| 宝坻区| 长岛县| 鹿邑县| 高陵县| 邯郸县| 朝阳市| 增城市| 色达县| 华宁县| 北流市| 汉源县| 宁陵县| 正宁县| 临高县| 揭阳市| 慈溪市|