官术网_书友最值得收藏!

Removing NaN values

Next, we are going to remove NaN values from the field.

We can do this as follows:

dfs = dfs[dfs['date'].notna()]

Next, it is good to save the preprocessed file into a separate CSV file in case we need it again. We can save the dataframe into a separate CSV file as follows:

dfs.to_csv('gmail.csv')

Great! Having done that, let's do some descriptive statistics. 

主站蜘蛛池模板: 花莲市| 阿坝县| 财经| 工布江达县| 枣阳市| 平武县| 思南县| 井研县| 建宁县| 盈江县| 襄城县| 清原| 天长市| 金秀| 萝北县| 黄梅县| 揭东县| 深水埗区| 比如县| 绥德县| 元谋县| 曲周县| 南昌县| 方正县| 平湖市| 曲周县| 延安市| 新化县| 玉环县| 宜城市| 丰台区| 修水县| 巧家县| 乾安县| 岐山县| 宜章县| 泽普县| 滦平县| 原阳县| 丰顺县| 安西县|