- Hands-On Exploratory Data Analysis with Python
- Suresh Kumar Mukhiya Usman Ahmed
- 66字
- 2021-06-24 16:44:56
Removing NaN values
Next, we are going to remove NaN values from the field.
We can do this as follows:
dfs = dfs[dfs['date'].notna()]
Next, it is good to save the preprocessed file into a separate CSV file in case we need it again. We can save the dataframe into a separate CSV file as follows:
dfs.to_csv('gmail.csv')
Great! Having done that, let's do some descriptive statistics.
推薦閱讀
- SPSS數據挖掘與案例分析應用實踐
- 深度實踐OpenStack:基于Python的OpenStack組件開發
- 工程軟件開發技術基礎
- Python 深度學習
- Julia機器學習核心編程:人人可用的高性能科學計算
- RTC程序設計:實時音視頻權威指南
- 云原生Spring實戰
- Linux網絡程序設計:基于龍芯平臺
- C語言程序設計立體化案例教程
- Full-Stack Vue.js 2 and Laravel 5
- Python程序設計案例教程
- Learning Concurrent Programming in Scala
- Vue.js應用測試
- Building Dynamics CRM 2015 Dashboards with Power BI
- Penetration Testing with the Bash shell