官术网_书友最值得收藏!

Removing NaN values

Next, we are going to remove NaN values from the field.

We can do this as follows:

dfs = dfs[dfs['date'].notna()]

Next, it is good to save the preprocessed file into a separate CSV file in case we need it again. We can save the dataframe into a separate CSV file as follows:

dfs.to_csv('gmail.csv')

Great! Having done that, let's do some descriptive statistics. 

主站蜘蛛池模板: 淮北市| 奎屯市| 鹤岗市| 蕲春县| 浮梁县| 墨竹工卡县| 台北市| 四会市| 安吉县| 阿勒泰市| 渑池县| 错那县| 禄劝| 东明县| 潼南县| 镇江市| 香港| 宣恩县| 丹凤县| 屏边| 图们市| 仲巴县| 焦作市| 天水市| 拜城县| 五常市| 榆树市| 莱阳市| 抚州市| 慈溪市| 密云县| 永嘉县| 宿迁市| 扎兰屯市| 鄂伦春自治旗| 齐河县| 连城县| 镇巴县| 平果县| 诸暨市| 罗城|