- Hands-On Exploratory Data Analysis with Python
- Suresh Kumar Mukhiya Usman Ahmed
- 66字
- 2021-06-24 16:44:56
Removing NaN values
Next, we are going to remove NaN values from the field.
We can do this as follows:
dfs = dfs[dfs['date'].notna()]
Next, it is good to save the preprocessed file into a separate CSV file in case we need it again. We can save the dataframe into a separate CSV file as follows:
dfs.to_csv('gmail.csv')
Great! Having done that, let's do some descriptive statistics.
推薦閱讀
- Learning Selenium Testing Tools with Python
- Windows系統管理與服務配置
- Mastering Kotlin
- OpenNI Cookbook
- 信息安全技術
- 用Flutter極速構建原生應用
- WordPress Plugin Development Cookbook(Second Edition)
- 大學計算機基礎(第2版)(微課版)
- Python數據分析從0到1
- Responsive Web Design by Example
- UML 基礎與 Rose 建模案例(第3版)
- Mastering Business Intelligence with MicroStrategy
- Terraform:多云、混合云環境下實現基礎設施即代碼(第2版)
- “笨辦法”學C語言
- Sitecore Cookbook for Developers