官术网_书友最值得收藏!

Table chart

A table chart combines a bar chart and a table. In order to understand the table chart, let's consider the following dataset. Consider standard LED bulbs that come in different wattages. The standard Philips LED bulb can be 4.5 Watts, 6 Watts, 7 Watts, 8.5 Watts, 9.5 Watts, 13.5 Watts, and 15 Watts. Let's assume there are two categorical variables, the year and the wattage, and a numeric variable, which is the number of units sold in a particular year.

Now, let's declare variables to hold the years and the available wattage data. It can be done as shown in the following snippet:

# Years under consideration
years = ["2010", "2011", "2012", "2013", "2014"]

# Available watt
columns = ['4.5W', '6.0W', '7.0W','8.5W','9.5W','13.5W','15W']
unitsSold = [
[65, 141, 88, 111, 104, 71, 99],
[85, 142, 89, 112, 103, 73, 98],
[75, 143, 90, 113, 89, 75, 93],
[65, 144, 91, 114, 90, 77, 92],
[55, 145, 92, 115, 88, 79, 93],
]

# Define the range and scale for the y axis
values = np.arange(0, 600, 100)

We have now prepared the dataset. Let's now try to draw a table chart using the following code block:

colors = plt.cm.OrRd(np.linspace(0, 0.7, len(years)))
index = np.arange(len(columns)) + 0.3
bar_width = 0.7

y_offset = np.zeros(len(columns))
fig, ax = plt.subplots()

cell_text = []

n_rows = len(unitsSold)
for row in range(n_rows):
plot = plt.bar(index, unitsSold[row], bar_width, bottom=y_offset,
color=colors[row])
y_offset = y_offset + unitsSold[row]
cell_text.append(['%1.1f' % (x) for x in y_offset])
i=0
# Each iteration of this for loop, labels each bar with corresponding value for the given year
for rect in plot:
height = rect.get_height()
ax.text(rect.get_x() + rect.get_width()/2, y_offset[i],'%d'
% int(y_offset[i]),
ha='center', va='bottom')
i = i+1

Finally, let's add the table to the bottom of the chart:

# Add a table to the bottom of the axes
the_table = plt.table(cellText=cell_text, rowLabels=years,
rowColours=colors, colLabels=columns, loc='bottom')
plt.ylabel("Units Sold")
plt.xticks([])
plt.title('Number of LED Bulb Sold/Year')
plt.show()

The preceding code snippets generate a nice table chart, as follows:

Look at the preceding table chart. Do you think it can be easily interpreted? It is pretty clear, right? You can see, for example, in the year 2014, 345 units of the 4.5-Watt bulb were sold. Similarly, the same information can be deduced from the preceding table plot. 

主站蜘蛛池模板: 顺义区| 游戏| 福建省| 兰西县| 台安县| 延庆县| 阳江市| 芮城县| 大城县| 宁晋县| 车致| 儋州市| 黑山县| 兴文县| 沁阳市| 天祝| 克东县| 合水县| 自贡市| 冀州市| 江陵县| 长岭县| 杭锦后旗| 澄江县| 大丰市| 贵港市| 黄大仙区| 吕梁市| 丰城市| 梁平县| 比如县| 旬邑县| 凤庆县| 镇雄县| 湘潭县| 巴东县| 西乡县| 兴宁市| 禄劝| 论坛| 德江县|