- Hands-On Exploratory Data Analysis with Python
- Suresh Kumar Mukhiya Usman Ahmed
- 115字
- 2021-06-24 16:44:46
Section 1: The Fundamentals of EDA
The main objective of this section is to cover the fundamentals of Exploratory Data Analysis (EDA) and understand different stages of the EDA process. We will also look at the key concepts of profiling, quality assessment, the main aspects of EDA, and the challenges and opportunities in EDA. In addition to this, we will be discovering different useful visualization techniques. Finally, we will be discussing essential data transformation techniques, including database-style dataframe merges, transformation techniques, and benefits of data transformation.
This section contains the following chapters:
推薦閱讀
- The Modern C++ Challenge
- SQL學(xué)習(xí)指南(第3版)
- Learning Selenium Testing Tools with Python
- Learning RabbitMQ
- JMeter 性能測試實(shí)戰(zhàn)(第2版)
- Python零基礎(chǔ)快樂學(xué)習(xí)之旅(K12實(shí)戰(zhàn)訓(xùn)練)
- 實(shí)戰(zhàn)Java高并發(fā)程序設(shè)計(jì)(第3版)
- The HTML and CSS Workshop
- Apache Mahout Clustering Designs
- 青少年學(xué)Python(第1冊)
- SQL 經(jīng)典實(shí)例
- Unity 2018 Shaders and Effects Cookbook
- Spring MVC+MyBatis開發(fā)從入門到項(xiàng)目實(shí)踐(超值版)
- 高性能PHP 7
- Mastering Object:Oriented Python(Second Edition)