- Hands-On C++ Game Animation Programming
- Gabor Szauer
- 820字
- 2021-06-30 14:45:59
Inverse
To find the inverse of a matrix, divide the adjugate of the matrix by its determinant. Since the scalar matrix division is not defined, you will need to multiply the adjugate by the reciprocal of the determinant.
Important note
In this chapter, you will build a matrix multiplication function that uses macros to avoid the need for lower-order matrices. The Chapter03/Sample01 sample in the downloadable materials for this book provides an implementation that utilizes lower-order matrices and is easier to work through with a debugger.
To implement a matrix inverse function, you will first need to be able to find the determinant and adjugate of a 4 x 4 matrix. Both functions rely on being able to find the minor of an element in the matrix:
- Create a new macro in mat4.cpp. This macro will find the minor of one element in the matrix, given an array of floats, and three rows and three columns to cut from the matrix:
#define M4_3X3MINOR(x, c0, c1, c2, r0, r1, r2) \
(x[c0*4+r0]*(x[c1*4+r1]*x[c2*4+r2]-x[c1*4+r2]* \
x[c2*4+r1])-x[c1*4+r0]*(x[c0*4+r1]*x[c2*4+r2]- \
x[c0*4+r2]*x[c2*4+r1])+x[c2*4+r0]*(x[c0*4+r1]* \
x[c1*4+r2]-x[c0*4+r2]*x[c1*4+r1]))
- With the M4_3X3MINOR macro defined, implement the determinant function in mat4.cpp. Since the determinant will multiply each element by the cofactor, some of the values need to be negated. Don't forget to add the function declaration to mat4.h:
float determinant(const mat4& m) {
return m.v[0] *M4_3X3MINOR(m.v, 1, 2, 3, 1, 2, 3)
- m.v[4] *M4_3X3MINOR(m.v, 0, 2, 3, 1, 2, 3)
+ m.v[8] *M4_3X3MINOR(m.v, 0, 1, 3, 1, 2, 3)
- m.v[12]*M4_3X3MINOR(m.v, 0, 1, 2, 1, 2, 3);
}
- Next, implement the adjugate function in mat4.cpp. Don't forget to add the function declaration to mat4.h. Use the M4_3X3MINOR macro to find the matrix of minors, then negate the appropriate elements to create the cofactor matrix. Finally, return the transpose of the cofactor matrix:
mat4 adjugate(const mat4& m) {
//Cof (M[i, j]) = Minor(M[i, j]] * pow(-1, i + j)
mat4 cofactor;
cofactor.v[0] = M4_3X3MINOR(m.v, 1, 2, 3, 1, 2, 3);
cofactor.v[1] =-M4_3X3MINOR(m.v, 1, 2, 3, 0, 2, 3);
cofactor.v[2] = M4_3X3MINOR(m.v, 1, 2, 3, 0, 1, 3);
cofactor.v[3] =-M4_3X3MINOR(m.v, 1, 2, 3, 0, 1, 2);
cofactor.v[4] =-M4_3X3MINOR(m.v, 0, 2, 3, 1, 2, 3);
cofactor.v[5] = M4_3X3MINOR(m.v, 0, 2, 3, 0, 2, 3);
cofactor.v[6] =-M4_3X3MINOR(m.v, 0, 2, 3, 0, 1, 3);
cofactor.v[7] = M4_3X3MINOR(m.v, 0, 2, 3, 0, 1, 2);
cofactor.v[8] = M4_3X3MINOR(m.v, 0, 1, 3, 1, 2, 3);
cofactor.v[9] =-M4_3X3MINOR(m.v, 0, 1, 3, 0, 2, 3);
cofactor.v[10]= M4_3X3MINOR(m.v, 0, 1, 3, 0, 1, 3);
cofactor.v[11]=-M4_3X3MINOR(m.v, 0, 1, 3, 0, 1, 2);
cofactor.v[12]=-M4_3X3MINOR(m.v, 0, 1, 2, 1, 2, 3);
cofactor.v[13]= M4_3X3MINOR(m.v, 0, 1, 2, 0, 2, 3);
cofactor.v[14]=-M4_3X3MINOR(m.v, 0, 1, 2, 0, 1, 3);
cofactor.v[15]= M4_3X3MINOR(m.v, 0, 1, 2, 0, 1, 2);
return transposed(cofactor);
}
- Now that the determinant and adjugate functions are finished, the implementation of the inverse function for a 4 x 4 matrix should be straightforward. Implement the inverse function in mat4.cpp. Don't forget to add the function declaration to mat4.h:
mat4 inverse(const mat4& m) {
float det = determinant(m);
if (det == 0.0f) {
cout << " Matrix determinant is 0\n";
return mat4();
}
mat4 adj = adjugate(m);
return adj * (1.0f / det);
}
- The inverse function takes a constant matrix reference and returns a new matrix that is the inverse of the provided matrix. Implement an invert convenience function in mat4.cpp. This convenience function will invert the matrix inline, modifying the argument. Don't forget to add the function declaration to mat4.h:
void invert(mat4& m) {
float det = determinant(m);
if (det == 0.0f) {
std::cout << "Matrix determinant is 0\n";
m = mat4();
return;
}
m = adjugate(m) * (1.0f / det);
}
Inverting matrices is a relatively expensive function. Matrices that only encode the position and rotation can be inverted faster because the inverse of a 3 x 3 rotation matrix is the same as its transpose.
You will learn how to implement this fast inverse in the next section when implementing the lookAt function.
- C# 7 and .NET Core Cookbook
- 計算機圖形學編程(使用OpenGL和C++)(第2版)
- C#程序設計(慕課版)
- 深度強化學習算法與實踐:基于PyTorch的實現(xiàn)
- 零基礎Java學習筆記
- 微信小程序全棧開發(fā)技術與實戰(zhàn)(微課版)
- Building Wireless Sensor Networks Using Arduino
- JavaScript動態(tài)網(wǎng)頁編程
- Unity Android Game Development by Example Beginner's Guide
- 從零開始構建深度前饋神經(jīng)網(wǎng)絡:Python+TensorFlow 2.x
- 零基礎學SQL(升級版)
- SCRATCH編程課:我的游戲我做主
- Oracle SOA Suite 12c Administrator's Guide
- Learning NHibernate 4
- Web前端開發(fā)技術實踐指導教程