官术网_书友最值得收藏!

Vector fields

We define a vector field as a function , and it can only be differentiated if the following applies:

Here,  is the derivative of F

We can think of M as a matrix that maps one vector to another, and we can now express F as follows:

Here,  for all , and therefore, the derivative of F is this:

Earlier on in single and multivariable calculus, we learned the importance of the chain rule, so it should be no surprise that we have it in vector calculus as well. And it goes as follows. 

Suppose we have  and  and the coordinates are , and . Then, the chain rule gives us the following:

We can rewrite this in matrix form, as follows:

主站蜘蛛池模板: 长沙县| 洪湖市| 徐汇区| 金门县| 和田县| 海盐县| 波密县| 景德镇市| 长阳| 砀山县| 广州市| 囊谦县| 东乌珠穆沁旗| 犍为县| 罗平县| 新源县| 施秉县| 通江县| 呈贡县| 石阡县| 大英县| 雅江县| 绥宁县| 栾城县| 历史| 泽普县| 靖江市| 大冶市| 贵溪市| 望都县| 金昌市| 卢氏县| 三都| 墨玉县| 资兴市| 鄱阳县| 乌鲁木齐县| 津南区| 仙游县| 陇西县| 抚宁县|