官术网_书友最值得收藏!

Chain rule

Let's take an arbitrary function f that takes variables x and y as input, and there is some change in either variable so that . Using this, we can find the change in f using the following:

This leads us to the following equation:

Then, by taking the limit of the function as , we can derive the chain rule for partial derivatives.

We express this as follows:

We now divide this equation by an additional small quantity (t) on which x and y are dependent, to find the gradient along . The preceding equation then becomes this one:

The differentiation rules that we came across earlier still apply here and can be extended to the multivariable case.

主站蜘蛛池模板: 石阡县| 伊川县| 泽普县| 高雄县| 阿坝| 交城县| 北宁市| 襄汾县| 青铜峡市| 清水县| 余干县| 青冈县| 抚顺县| 汉沽区| 都匀市| 和硕县| 敖汉旗| 长沙县| 南和县| 莱西市| 千阳县| 塔河县| 邵武市| 华阴市| 寻甸| 乐业县| 迁西县| 翼城县| 大名县| 桦川县| 石首市| 南丹县| 弥勒县| 平谷区| 平山县| 杭锦旗| 大安市| 江都市| 西峡县| 石门县| 黄陵县|