官术网_书友最值得收藏!

Singular value decomposition

Singular Value Decomposition (SVD) is widely used in linear algebra and is known for its strength, particularly arising from the fact that every matrix has an SVD. It looks like this:

For our purposes, let's suppose , , , and , and that U, V are orthogonal matrices, whereas ∑ is a matrix that contains singular values (denoted by σi) of A along the diagonal. 

in the preceding equation looks like this:

We can also write the SVD like so:

Here, ui, vi are the column vectors of U, V.

主站蜘蛛池模板: 天门市| 登封市| 五家渠市| 高唐县| 明溪县| 铅山县| 公主岭市| 永嘉县| 长乐市| 裕民县| 安顺市| 新丰县| 交城县| 曲水县| 青岛市| 哈巴河县| 临洮县| 德江县| 辽阳县| 水富县| 陈巴尔虎旗| 长葛市| 江口县| 新宾| 阳谷县| 西安市| 怀来县| 沈丘县| 聂荣县| 奇台县| 吉水县| 大关县| 琼结县| 南投县| 普兰店市| 柘荣县| 汝州市| 福州市| 德钦县| 盈江县| 南岸区|