官术网_书友最值得收藏!

Singular value decomposition

Singular Value Decomposition (SVD) is widely used in linear algebra and is known for its strength, particularly arising from the fact that every matrix has an SVD. It looks like this:

For our purposes, let's suppose , , , and , and that U, V are orthogonal matrices, whereas ∑ is a matrix that contains singular values (denoted by σi) of A along the diagonal. 

in the preceding equation looks like this:

We can also write the SVD like so:

Here, ui, vi are the column vectors of U, V.

主站蜘蛛池模板: 许昌县| 师宗县| 鱼台县| 岳普湖县| 汉寿县| 新郑市| 承德市| 壤塘县| 密山市| 永城市| 富民县| 南召县| 徐闻县| 巢湖市| 凯里市| 达尔| 泰州市| 张家界市| 长岭县| 孟津县| 丘北县| 甘肃省| 宜兰市| 土默特左旗| 兴义市| 思南县| 胶南市| 勐海县| 宜城市| 铜山县| 台中市| 炉霍县| 曲阜市| 新巴尔虎左旗| 建湖县| 喜德县| 苍山县| 鹤岗市| 青州市| 鄂托克旗| 南华县|