官术网_书友最值得收藏!

Linear maps

A linear map is a function , where V and W are both vector spaces. They must satisfy the following criteria:

  • , for all 
  • , for all  and 

Linear maps tend to preserve the properties of vector spaces under addition and scalar multiplication. A linear map is called a homomorphism of vector spaces; however, if the homomorphism is invertible (where the inverse is a homomorphism), then we call the mapping an isomorphism

When V and W are isomorphic, we denote this as , and they both have the same algebraic structure.

If V and W are vector spaces in , and , then it is called a natural isomorphism. We write this as follows:

Here,  and  are the bases of V and W. Using the preceding equation, we can see that , which tells us that  is an isomorphism. 

Let's take the same vector spaces V and W as before, with bases  and  respectively. We know that  is a linear map, and the matrix T that has entries Aij, where  and  can be defined as follows:

.

From our knowledge of matrices, we should know that the jth column of A contains Tvj in the basis of W.

Thus,  produces a linear map , which we write as .

主站蜘蛛池模板: 闽侯县| 黄大仙区| 延川县| 五莲县| 承德市| 涟源市| 新平| 方正县| 积石山| 将乐县| 广州市| 台江县| 鄂托克前旗| 旌德县| 连南| 金沙县| 台南县| 武平县| 龙川县| 隆林| 武汉市| 高要市| 镇沅| 乳山市| 禹城市| 西峡县| 商河县| 城口县| 巴中市| 江津市| 汶川县| 惠安县| 繁峙县| 青海省| 澄城县| 临江市| 富阳市| 仲巴县| 江口县| 尚志市| 亚东县|