- The Applied Data Science Workshop
- Alex Galea
- 64字
- 2021-06-18 18:27:36
2. Data Exploration with Jupyter
Overview
In this chapter, we'll finally get our hands on some data and work through an exploratory analysis, where we'll compute some informative metrics and visualizations. By the end of this chapter, you will be able to use the pandas Python library to load tabular data and run calculations on it, and the seaborn Python library to create visualizations.
推薦閱讀
- Boost程序庫(kù)完全開發(fā)指南:深入C++”準(zhǔn)”標(biāo)準(zhǔn)庫(kù)(第5版)
- 趣學(xué)Python算法100例
- Flux Architecture
- Python漫游數(shù)學(xué)王國(guó):高等數(shù)學(xué)、線性代數(shù)、數(shù)理統(tǒng)計(jì)及運(yùn)籌學(xué)
- Apache Spark 2.x for Java Developers
- 區(qū)塊鏈技術(shù)與應(yīng)用
- OpenGL Data Visualization Cookbook
- Building Microservices with .NET Core
- C語(yǔ)言程序設(shè)計(jì)習(xí)題與實(shí)驗(yàn)指導(dǎo)
- Solutions Architect's Handbook
- LabVIEW數(shù)據(jù)采集
- Software-Defined Networking with OpenFlow(Second Edition)
- 量子計(jì)算機(jī)編程:從入門到實(shí)踐
- Spring Boot 2+Thymeleaf企業(yè)應(yīng)用實(shí)戰(zhàn)
- Alfresco for Administrators