Summary
This chapter went through the core tools for data science and statistical computing in Python, namely, NumPy for linear algebra and computation, pandas for tabular data processing, and Matplotlib and Seaborn for visualization. These tools will be used extensively in later chapters of this book, and they will prove useful in your future projects. In the next chapter, we will go into the specifics of a number of statistical concepts that we will be using throughout this book and learn how to implement them in Python.
XBC94
ABB35
推薦閱讀
- jQuery Mobile Web Development Essentials(Third Edition)
- Mobile Application Development:JavaScript Frameworks
- Developing Middleware in Java EE 8
- NativeScript for Angular Mobile Development
- SQL Server 2016數據庫應用與開發習題解答與上機指導
- 深入淺出PostgreSQL
- 精通MATLAB(第3版)
- 焊接機器人系統操作、編程與維護
- HTML5從入門到精通(第4版)
- C#程序設計(項目教學版)
- Kotlin開發教程(全2冊)
- Kubernetes源碼剖析
- Programming Microsoft Dynamics? NAV 2015
- Python商務數據分析(微課版)
- Python預測之美:數據分析與算法實戰(雙色)