Summary
This chapter went through the core tools for data science and statistical computing in Python, namely, NumPy for linear algebra and computation, pandas for tabular data processing, and Matplotlib and Seaborn for visualization. These tools will be used extensively in later chapters of this book, and they will prove useful in your future projects. In the next chapter, we will go into the specifics of a number of statistical concepts that we will be using throughout this book and learn how to implement them in Python.
XBC94
ABB35
推薦閱讀
- Mastering Concurrency Programming with Java 8
- PostgreSQL Cookbook
- BIM概論及Revit精講
- 小程序,巧應用:微信小程序開發(fā)實戰(zhàn)(第2版)
- Mastering Python Design Patterns
- HoloLens與混合現(xiàn)實開發(fā)
- Orleans:構(gòu)建高性能分布式Actor服務(wù)
- 軟件工程與UML案例解析(第三版)
- Python網(wǎng)絡(luò)爬蟲實例教程(視頻講解版)
- Laravel Design Patterns and Best Practices
- SAS編程演義
- 讀故事學編程:Python王國歷險記
- 數(shù)據(jù)結(jié)構(gòu)與算法詳解
- WCF編程(第2版)
- 狼書(卷2):Node.js Web應用開發(fā)