- Deep Learning for Beginners
- Dr. Pablo Rivas Laura Montoya
- 142字
- 2021-06-11 18:20:14
References
- Hecht-Nielsen, R. (1992). Theory of the backpropagation neural network. In Neural networks for perception (pp. 65-93). Academic Press.
- Kane, F. (2017). Hands-On Data Science and Python ML. Packt Publishing Ltd.
- LeCun, Y., Bottou, L., Orr, G., and Muller, K. (1998). Efficient backprop in neural networks: Tricks of the trade (Orr, G. and Müller, K., eds.). Lecture Notes in Computer Science, 1524(98), 111.
- Ojeda, T., Murphy, S. P., Bengfort, B., and Dasgupta, A. (2014). Practical Data Science Cookbook. Packt Publishing Ltd.
- Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386.
- Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985). Learning internal representations by error propagation (No. ICS-8506). California Univ San Diego La Jolla Inst for Cognitive Science.
推薦閱讀
- Cortex-M3 + μC/OS-II嵌入式系統(tǒng)開發(fā)入門與應用
- Istio入門與實戰(zhàn)
- Creating Dynamic UI with Android Fragments
- BeagleBone By Example
- 基于ARM的嵌入式系統(tǒng)和物聯(lián)網開發(fā)
- micro:bit魔法修煉之Mpython初體驗
- 分布式微服務架構:原理與實戰(zhàn)
- 電腦高級維修及故障排除實戰(zhàn)
- 電腦組裝與維護即時通
- Spring Security 3.x Cookbook
- FreeSWITCH Cookbook
- Arduino項目開發(fā):智能生活
- Arduino項目案例:游戲開發(fā)
- 嵌入式系統(tǒng)設計大學教程(第2版)
- The Applied Artificial Intelligence Workshop