舉報

會員
Python Data Visualization Cookbook(Second Edition)
Igor Milovanovi? Dimitry Foures Giuseppe Vettigli 著
更新時間:2021-07-30 10:06:13
開會員,本書免費讀 >
最新章節:
Index
IfyoualreadyknowaboutPythonprogrammingandwanttounderstanddata,dataformats,datavisualization,andhowtousePythontovisualizedatathenthisbookisforyou.
最新章節
- Index
- Visualizing maps and bubbles
- Plotting a 3D trefoil knot
- Creating bar charts
- Creating line charts
- Introduction
品牌:中圖公司
上架時間:2021-07-30 09:45:07
出版社:Packt Publishing
本書數字版權由中圖公司提供,并由其授權上海閱文信息技術有限公司制作發行
- Index 更新時間:2021-07-30 10:06:13
- Visualizing maps and bubbles
- Plotting a 3D trefoil knot
- Creating bar charts
- Creating line charts
- Introduction
- Chapter 9. Visualizations on the Clouds with Plot.ly
- Understanding the difference between pyplot and OO API
- Rendering text with LaTeX
- Making use of text and font properties
- Making error bars
- Making Gantt charts
- Making a box-and-whisker plot
- Drawing barbs
- Introduction
- Chapter 8. More on matplotlib Gems
- Importance of autocorrelation
- Plotting the cross correlation between two variables
- Using scatter plots and histograms
- Using colormaps
- Drawing streamlines of vector flow
- Creating stem plot
- Understanding spectrograms
- Understanding logarithmic plots
- Introduction
- Chapter 7. Using the Right Plots to Understand Data
- Generating CAPTCHA images
- Plotting data on a map using the Google Map API
- Plotting data on a map using Basemap
- Displaying images with other plots in the figure
- Plotting with images
- Processing images with PIL
- Introduction
- Chapter 6. Plotting Charts with Images and Maps
- Animating with OpenGL
- Animating in matplotlib
- Creating 3D histograms
- Creating 3D bars
- Introduction
- Chapter 5. Making 3D Visualizations
- Customizing matplotlib with style
- Visualizing the filesystem tree using a polar bar
- Drawing polar plots
- Filling an under-plot area
- Creating contour plots
- Customizing grids
- Using subplots
- Adding a data table to the figure
- Adding a shadow to the chart line
- Setting the transparency and size of axis labels
- Introduction
- Chapter 4. More Plots and Customizations
- Drawing scatter plots with colored markers
- Making stacked plots
- Plotting with filled areas
- Making pie charts count
- Making bar charts with error bars
- Making histograms
- Moving spines to the center
- Adding legends and annotations
- Setting ticks labels and grids
- Defining plot line styles properties and format strings
- Defining axis lengths and limits
- Drawing simple sine and cosine plots
- Defining plot types – bar line and stacked charts
- Introduction
- Chapter 3. Drawing Your First Plots and Customizing Them
- Smoothing the noise in real-world data
- Generating controlled random datasets
- Importing image data into NumPy arrays
- Reading streaming data sources
- Reading files in chunks
- Cleaning up data from outliers
- Importing data from a database
- Importing and manipulating data with Pandas
- Exporting data to JSON CSV and Excel
- Importing data from a JSON resource
- Importing data from tab-delimited files
- Importing data from fixed-width data files
- Importing data from Microsoft Excel files
- Importing data from CSV
- Introduction
- Chapter 2. Knowing Your Data
- Customizing matplotlib's parameters per project
- Customizing matplotlib's parameters in code
- Installing a requests module
- Installing Python Imaging Library (PIL) for image processing
- Installing matplotlib on Windows
- Installing matplotlib on Mac OS X
- Installing virtualenv and virtualenvwrapper
- Installing matplotlib NumPy and SciPy
- Introduction
- Chapter 1. Preparing Your Working Environment
- Customer support
- Reader feedback
- Conventions
- Sections
- Who this book is for
- What you need for this book
- What this book covers
- Preface
- Support files eBooks discount offers and more
- www.PacktPub.com
- About the Reviewer
- About the Authors
- Credits
- 版權頁
- 封面
- 封面
- 版權頁
- Credits
- About the Authors
- About the Reviewer
- www.PacktPub.com
- Support files eBooks discount offers and more
- Preface
- What this book covers
- What you need for this book
- Who this book is for
- Sections
- Conventions
- Reader feedback
- Customer support
- Chapter 1. Preparing Your Working Environment
- Introduction
- Installing matplotlib NumPy and SciPy
- Installing virtualenv and virtualenvwrapper
- Installing matplotlib on Mac OS X
- Installing matplotlib on Windows
- Installing Python Imaging Library (PIL) for image processing
- Installing a requests module
- Customizing matplotlib's parameters in code
- Customizing matplotlib's parameters per project
- Chapter 2. Knowing Your Data
- Introduction
- Importing data from CSV
- Importing data from Microsoft Excel files
- Importing data from fixed-width data files
- Importing data from tab-delimited files
- Importing data from a JSON resource
- Exporting data to JSON CSV and Excel
- Importing and manipulating data with Pandas
- Importing data from a database
- Cleaning up data from outliers
- Reading files in chunks
- Reading streaming data sources
- Importing image data into NumPy arrays
- Generating controlled random datasets
- Smoothing the noise in real-world data
- Chapter 3. Drawing Your First Plots and Customizing Them
- Introduction
- Defining plot types – bar line and stacked charts
- Drawing simple sine and cosine plots
- Defining axis lengths and limits
- Defining plot line styles properties and format strings
- Setting ticks labels and grids
- Adding legends and annotations
- Moving spines to the center
- Making histograms
- Making bar charts with error bars
- Making pie charts count
- Plotting with filled areas
- Making stacked plots
- Drawing scatter plots with colored markers
- Chapter 4. More Plots and Customizations
- Introduction
- Setting the transparency and size of axis labels
- Adding a shadow to the chart line
- Adding a data table to the figure
- Using subplots
- Customizing grids
- Creating contour plots
- Filling an under-plot area
- Drawing polar plots
- Visualizing the filesystem tree using a polar bar
- Customizing matplotlib with style
- Chapter 5. Making 3D Visualizations
- Introduction
- Creating 3D bars
- Creating 3D histograms
- Animating in matplotlib
- Animating with OpenGL
- Chapter 6. Plotting Charts with Images and Maps
- Introduction
- Processing images with PIL
- Plotting with images
- Displaying images with other plots in the figure
- Plotting data on a map using Basemap
- Plotting data on a map using the Google Map API
- Generating CAPTCHA images
- Chapter 7. Using the Right Plots to Understand Data
- Introduction
- Understanding logarithmic plots
- Understanding spectrograms
- Creating stem plot
- Drawing streamlines of vector flow
- Using colormaps
- Using scatter plots and histograms
- Plotting the cross correlation between two variables
- Importance of autocorrelation
- Chapter 8. More on matplotlib Gems
- Introduction
- Drawing barbs
- Making a box-and-whisker plot
- Making Gantt charts
- Making error bars
- Making use of text and font properties
- Rendering text with LaTeX
- Understanding the difference between pyplot and OO API
- Chapter 9. Visualizations on the Clouds with Plot.ly
- Introduction
- Creating line charts
- Creating bar charts
- Plotting a 3D trefoil knot
- Visualizing maps and bubbles
- Index 更新時間:2021-07-30 10:06:13