舉報

會員
Building Machine Learning Systems with Python
最新章節:
Index
Thisisatutorial-drivenandpractical,butwell-groundedbookshowcasinggoodMachineLearningpractices.Therewillbeanemphasisonusingexistingtechnologiesinsteadofshowinghowtowriteyourownimplementationsofalgorithms.Thisbookisascenario-based,example-driventutorial.BytheendofthebookyouwillhavelearntcriticalaspectsofMachineLearningPythonprojectsandexperiencedthepowerofML-basedsystemsbyactuallyworkingonthem.ThisbookprimarilytargetsPythondeveloperswhowanttolearnaboutandbuildMachineLearningintotheirprojects,orwhowanttoprovideMachineLearningsupporttotheirexistingprojects,andseethemgetimplementedeffectively.Computerscienceresearchers,datascientists,ArtificialIntelligenceprogrammers,andstatisticalprogrammerswouldequallygainfromthisbookandwouldlearnabouteffectiveimplementationthroughlotsofthepracticalexamplesdiscussed.ReadersneednopriorexperiencewithMachineLearningorstatisticalprocessing.Pythondevelopmentexperienceisassumed.
目錄(91章)
倒序
- 封面
- 版權信息
- Credits
- About the Authors
- About the Reviewers
- www.PacktPub.com
- Preface
- Chapter 1. Getting Started with Python Machine Learning
- Machine learning and Python – the dream team
- What the book will teach you (and what it will not)
- What to do when you are stuck
- Getting started
- Our first (tiny) machine learning application
- Summary
- Chapter 2. Learning How to Classify with Real-world Examples
- The Iris dataset
- Building more complex classifiers
- A more complex dataset and a more complex classifier
- Binary and multiclass classification
- Summary
- Chapter 3. Clustering – Finding Related Posts
- Measuring the relatedness of posts
- Preprocessing – similarity measured as similar number of common words
- Clustering
- Solving our initial challenge
- Tweaking the parameters
- Summary
- Chapter 4. Topic Modeling
- Latent Dirichlet allocation (LDA)
- Comparing similarity in topic space
- Choosing the number of topics
- Summary
- Chapter 5. Classification – Detecting Poor Answers
- Sketching our roadmap
- Learning to classify classy answers
- Fetching the data
- Creating our first classifier
- Deciding how to improve
- Using logistic regression
- Looking behind accuracy – precision and recall
- Slimming the classifier
- Ship it!
- Summary
- Chapter 6. Classification II – Sentiment Analysis
- Sketching our roadmap
- Fetching the Twitter data
- Introducing the Naive Bayes classifier
- Creating our first classifier and tuning it
- Cleaning tweets
- Taking the word types into account
- Summary
- Chapter 7. Regression – Recommendations
- Predicting house prices with regression
- Penalized regression
- P greater than N scenarios
- Summary
- Chapter 8. Regression – Recommendations Improved
- Improved recommendations
- Basket analysis
- Summary
- Chapter 9. Classification III – Music Genre Classification
- Sketching our roadmap
- Fetching the music data
- Looking at music
- Using FFT to build our first classifier
- Improving classification performance with Mel Frequency Cepstral Coefficients
- Summary
- Chapter 10. Computer Vision – Pattern Recognition
- Introducing image processing
- Loading and displaying images
- Classifying a harder dataset
- Local feature representations
- Summary
- Chapter 11. Dimensionality Reduction
- Sketching our roadmap
- Selecting features
- Other feature selection methods
- Feature extraction
- Multidimensional scaling (MDS)
- Summary
- Chapter 12. Big(ger) Data
- Learning about big data
- Using jug to break up your pipeline into tasks
- Using Amazon Web Services (AWS)
- Summary
- Appendix A. Where to Learn More about Machine Learning
- Online courses
- Books
- What was left out
- Summary
- Index 更新時間:2021-08-13 16:36:01
推薦閱讀
- Vue.js設計與實現
- Java程序設計(慕課版)
- Oracle Database In-Memory(架構與實踐)
- VMware vSphere 6.7虛擬化架構實戰指南
- Mastering OpenCV 4
- HTML5+CSS3網頁設計
- Getting Started with Eclipse Juno
- 軟件測試教程
- Django 5企業級Web應用開發實戰(視頻教學版)
- Java Web從入門到精通(第2版)
- PHP+MySQL動態網站開發從入門到精通(視頻教學版)
- Java自然語言處理(原書第2版)
- C語言程序設計實驗指導與習題精解
- 詩意的邊緣
- Learning SaltStack(Second Edition)
- Visual C++網絡編程教程(Visual Studio 2010平臺)
- Java核心技術卷I基礎知識(原書第9版)
- MySQL 5.7從入門到精通(視頻教學版)(第2版)
- 計算機應用基礎實驗指導(第二版)
- 大學計算機應用基礎教程(第三版)
- Access 2010數據庫基礎教程
- 零基礎學Qt 6編程
- SolidWorks軟件入門與建模技巧
- 零基礎學低(無)代碼
- SAFe 4.0參考指南:精益軟件與系統工程的規模化敏捷框架
- Learning Internet of Things
- 機器學習數學基礎一本通(Python版)
- Learn Docker:Fundamentals of Docker 19.x
- Python程序設計
- MariaDB Essentials